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a b s t r a c t

We have used the methods of classical statistical mechanics in calculating the temperature and field-
dependence of specific magnetic and magnetothermal properties of Nd2Fe14B. For example, we correlate
the orientation of the magnetization vector, relative to a specific crystallographic axis, to the angular
coordinates of the most probable location in a probability landscape of this anisotropic system. Further,
we correlate the probability distribution to the associated magnetic entropy. The field dependence of the
canting angle, either off the c-axis or off the basal plane, is also discussed in particular for critical
magnetic fields at which first-order magnetization process takes place. Specific features of magnetization
curves, at certain temperatures, are discussed in the light of results based on models involving crystal
field and/or exchange interaction effects.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The compound Nd2Fe14B has attracted much attention as an
important candidate for permanent magnets [1]. Numerous ex-
perimental and theoretical work has been devoted to either im-
prove the key magnetic properties e.g. Curie temperature and
coercivity, or to understand the origin of its high magnetic quality.
For example, studies on the magnetization, magnetostriction and
torque measurements [2–12], magnetic susceptibility [13,14], heat
capacity [15,16], size-dependent spin reorientation [17], and ab
initio calculations [18] are only representatives of the vast litera-
ture on this important material. In addition, extensive theoretical
efforts have been done to understand the magnetic properties of
rare-earth transition metal compounds (RT) e.g. Nd2Fe14B. Those
efforts have resulted in constructing a Hamiltonian which con-
siders both the crystal field and/or the exchange energy to de-
scribe those systems, where the itinerant 3d electrons of the T
atoms are treated differently from the more localized 4f electrons
of the R atoms. Examples of studies, using such involved Ha-
miltonian are calculation of the spin-reorientation temperature of
Nd2Fe14B [19] and calculation of the magnetization curves at se-
lected temperatures along specific crystallographic directions in
the tetragonal Nd2Fe14B crystal [3,20–22].

The aim of this work is to use the temperature dependence of
experimentally determined anisotropy constants [5] in order to

calculate a host of magnetic and magneto thermal properties,
using the fundamentals of classical statistical mechanics in a
simple model. In the discussion section it is hoped to demonstrate
that the results of our calculation are not in disagreement with
more involved methods where the specific nature of 4f and 3d
electrons, and consequently the relative strength of the interac-
tions present, were taken into consideration.

We have already reported, mainly, on calculating the magne-
tization curves of Nd2Fe14B in the temperature range 77–293 K
using a statistical mechanics-based model [7]. In the present paper
we extend our work on this system, in particular we calculate the
probability of having the magnetization vector orientated either
along or perpendicular to the c-axis, for a range of temperatures
and magnetic fields. This study helps us to correlate the angular
location of the magnetization vector to both of the Zeeman and
thermal energies in this anisotropic system. We also report on the
temperature dependence of magnetic susceptibility, magnetic heat
capacity and magnetic entropy in magnetic fields of different
strength and directions within the tetragonal system of Nd2Fe14B.

2. Model and analysis

We treat the magnetization vector as a classical vector whose
orientation in space is dictated by an interplay between aniso-
tropy, Zeeman and thermal energies. For such a vector the laws of
classical statistical physics are appropriate. The angular states, of
such a vector should assume continuous, rather than discrete
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orientation, i.e. the polar and azimuthal angles θ and φ should
assume all values in their respective ranges 0–π and 0–2π, and
hence an integration rather than a summation should be used.

The classical partition function, therefore is given by [7]
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where V is the volume of a spherical magnetic particle taken to be
10�19 cm3 (�28 Å in radius) throughout this work unless other-
wise specified, and k T1/ Bβ = , where kB is the Boltzmann constant
and T is the absolute temperature.

The classical partition function includes the total energy den-
sity of this tetragonal magnetic system [5,23], i.e. the sum of the
anisotropy and Zeeman energy densities. The total energy, how-
ever, may include other types of energy e.g. magnetostrictive for
specific systems, but in this work we focus only on the magneto-
crystalline anisotropy, besides of course, the Zeeman term, there-
fore the energy density takes the following form:
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where θm is the angle between the magnetization vector and the
c-axis, φm is the azimuthal angle (chosen in this work to be the
angle between the projection of the magnetization vector in the
basal plane, and the [110] direction, unless otherwise specified)
and Ki's are the anisotropy constants. The temperature depen-
dence of the five anisotropy constants, and the saturation mag-
netization Ms were approximated by simple polynomials using the
best fit to the tabulated data of K(T) and Ms(T) in the temperature
range 78–293 K reported by Blozoni et al. [5].

The magnetization, magnetic susceptibility, magnetic heat ca-
pacity and entropy are well known to be derived from the parti-
tion function (e.g. [24,25]). The magnetization is calculated using
the following relation:
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Another method for calculating the isothermal magnetization
is to minimize Eq. (2), in order to find the coordinates θm and φm

of the magnetization vector at equilibrium. These coordinates are
calculated for a given temperature and different magnetic fields,
applied along a certain crystallographic direction, in order to
produce the magnetization curves. There are several methods to
minimize a function of two variables (e.g. Davidon–Fletcher and
Powell method) [26], however, we have used the Mathematica
software package [27], to perform this task.

The magnetic susceptibility per unit volume is given by
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The thermally-averaged energy 〈E〉 is obtained [24] via the
standard relation

E Zln / β〈 〉 = − ∂ ∂

The magnetic heat capacity and the change in the magnetic
entropy, as a function of temperature and field, are given by Eqs.
(5) and (6) respectively:
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where the quantity S S T S T( ) ( )mag 2 1Δ = − is the change in entropy in
a certain temperature range, for a given field.

The Helmholtz free energy F is given by F¼E�TS, where E is
referred to as internal energy or mean energy 〈E〉. The entropy, at
constant field H, is given by S F T( / )H= − ∂ ∂ or equivalently by
S k Z E k P P[ ln ] lnB B i i iβ= + 〈 〉 = − ∑ , where Z is the sum-over-states
(or an integral-over-states). For a system of a definite energy
spectrum, the probability of having a state with an energy Ei is
given by P e Z/i

Ei= β− .
The probability, for the magnetization vector, to have angular

coordinates θm and φm, at a given temperature and field is given
by
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Studying the probability angular dependence is important for
an understanding of the behavior of magnetic systems. In parti-
cular, it enables one to study the evolution of the probability as a
function of temperature and field [28,29].

We have used the cgs system of units and the Mathematica
software package for numeric, symbolic, fitting analysis and plot-
ting our results throughout this work.

3. Results and discussion

3.1. The magnetization curves of Nd2Fe14B

We have already reported on our calculation of the magneti-
zation curves at T¼77, 125, 176 and 270 K [7]. We report here on
the magnetization curves at four additional temperatures, namely
at T¼4.2, 95, 150 and 293 K, as shown in Figs. 1–4 respectively. The
absence of in-plane anisotropy is evident at T¼293 K, in contrast
to lower temperatures r176 K.

We have calculated the magnetization curves at T¼95 K either
by evaluating the partition function, and consequently determin-
ing the magnetization from Eq. (3) as shown in Fig. 2, or by finding
the equilibrium value of θm at which the total energy density is
minimum for a certain field. The isothermal dependence of the
magnetization on field, along a specific crystalline direction, is
calculated by determining the magnetization component along
the field direction for different field values. The agreement be-
tween the results of Figs. 2 and 5 is obvious, and indicates that the
component of the magnetization vector along the field direction is
of such a magnitude that minimizes the energy. In Section 3.4, we
will discuss the consistency between the energy and probability
landscapes.

We discuss, now, specific features of magnetization curves
calculated using our method, in the light of more involved calcu-
lations e.g. [5,12,21,22]. As we mentioned before, we have re-
ported on the field dependence of magnetization in the 77–293 K
temperature range along the [001], [100] and [110] directions [7].
Therefore we are able to compare between our results at 95 and
293 K, with those of Refs. [21,22]. Yamada et al. [21] suggested a
model which takes into consideration both of the molecular field
and crystalline electric field CEF. On the other hand, the Fe sub-
lattice anisotropy was treated phenomenologically. According to
their calculation, the magnetization curves at 290 K (Fig. 10 in Ref.
[21]) exhibit an absence of anisotropy in the hard [100] and [110]
directions and almost a field-independent easy [001] direction, up
to 300 kOe. Our results in Fig. 4 are fairly in good agreement
with the calculation of Yamada et al., in particular regarding the
absence of an in-plane anisotropy and the value of the anisotropy
field of �100 kOe. However, the experimental data reported
by Yamada et al. shows a slight in-plane anisotropy close to
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