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a b s t r a c t

We study the transverse Ising spin model with spin-1 impurities under the exact solution. We develop a
universal method to deal with the multi-impurity problem by introducing a displacement quantity in the
wave function and get a recursive formula to simplify the calculation of the partition function. This
allows us to rigorously determine the impurity effects for a specific distribution of impurity in the
thermodynamic limit. The low temperature behaviors are governed by the interplay between host and
impurity excitations, and the quantum critical fluctuations around the critical point of the transverse
Ising model are tuned by the transverse field and the concentration of impurity. However the impurity
effects are limited, which depends on the host–impurity exchange interaction and the coupling strength
of impurities.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The low-dimensional quantum magnets are intriguing model
systems for studying correlated many-body quantum physics. This
is because of the rich physics that they exhibit, and such systems
are tractable from a computational and theoretical standpoint. The
knowledge acquired by studying these relatively simple systems
can be implemented in understanding physical phenomena in the
more complex three-dimensional solids. In the low-dimensional
systems, the order–disorder phenomena induced by impurity have
attracted a lot of interest both from theoretical and experiment
points of view [1–6]. For example, by studying the two-dimen-
sional Ising model with random impurities, McCoy et al. [7] found
that the impurity effect can explain the singularity of specific heat
at the Curie temperature [8]. The neutron diffraction experiment
[9] illustrates that the Ising chain compound Ca Co Mn Ox x3 2 6− ex-
hibits a long-range order for x0.75 1< < , however, the long-range
order is abruptly disappeared in the narrow vicinity of x¼1. The
long-range order exists only in the Ca Co Mn Ox x3 2 6− with reduced
ionic order, this means that this order–disorder phenomenon is
probably related to the disruption of the long-range magnetic in-
teractions by the magnetic-site disorder. The nonmagnetic Ca
substituted at the Sr sites of the Sr2CuO3 leads to a spin gap [10],
which is independent to the interaction exchange coupling. This
result suggests that the spin gap in an antiferromagnetic

Heisenberg spin chain can also be induced by a local bound dis-
order of the intrachain exchange coupling. Though considerable
efforts have been devoted to study the order–disorder phenom-
ena, the understanding is incomplete for the order–disorder
phenomena induced by impurities in the low-dimensional quan-
tum magnetic systems.

The transverse Ising model (TIM) plays a particularly important
role in the low-dimensional quantum magnetic systems, because
it is the simplest model and surprisingly rich phase diagrams are
found when competing interactions exist [11,12]. On the other
hand, the TIMs are strongly affected by disorder in the case of low-
dimension, which makes them particularly useful for combined
theoretical and experimental studies of disorder in magnets [13–
15]. So the TIM is often used to study order–disorder ferroelectrics
with a tunnelling effect or the magnetic ordering in materials with
singlet crystal field ground state [16].

In this paper, we investigate the order–disorder phenomena
induced by impurities based on the TIM. Due to the difficulty in
mathematics, it is hard to study the multi-impurity problem pre-
cisely. Here we develop a general method for dealing with the TIM
with spin-1 impurities based on the hole decomposition [17,18]. By
introducing a displacement quantity related to impurity in the
wave function, the impurity sites information can be expressed by
other sites. This method is not dependent on the configuration of
the spin chain, which allows us to deal with any distribution of
impurity. Here we consider the simplest case of the compact dis-
tribution of impurity in the free boundary condition. We analyze
the relation between the impurity excitation and the quantum
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critical behavior in low temperature, the results indicate that the
order–disorder transitions induced by impurities are strongly
governed by the interplay hole and impurity fermion excitation.

In Section 2 the exact solution of this model with multi-im-
purity is outlined. In Section 3, by calculating the energy gap and
the specific heat, we analyze the effects of impurity parameters on
the order–disorder transition of the system. In Section 4, we
conclude a summary and a possibility for application.

2. Exact solution of the models

On the basis of TIM, the Hamiltonian with multi-impurity can
be written as H H HTIM imp= +
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where x y z( , , )σ α =α are Pauli matrices to present the host spins,
S x y z( , , )i α =α refers a spin-1 magnetic impurity at the ith site. The
summation runs over nearest neighbor sites. J′ denotes the host–
impurity exchange interaction, J″ is the coupling strength between
impurities, and D is the single-ion anisotropy of the impurity. If the
numbers of impurity are M, and the spin chain length is L, we
define the concentration of impurity is x¼M/L. We assume that
the spin chain has a free boundary condition.

Based on the hole decomposition scheme, a quantum con-

served quantity N M S( )i i
z

0
2^ = − ∑ can be induced in the system.

The operator N0
^ commutes with H, which indicates that the hole

states (S 0i
z = ) are decoupled from the spin polarized states

(S 1i
z = ± ). Therefore, the Hilbert space can be given by the sum of

two subspaces: 0 1= ⊕ . The holes separate the system into
many independent spin-1/2 Ising segments. The configurations of
segments depend on the distribution of impurity. Here we con-
sider a simple distribution that all impurity sites link compactly. In
a system of p holes, there are at most p 1+ segments of spin-1/2.
In the specific condition, the Hamiltonian equation (1) can be
mapped to the following Hamiltonian:
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J Ji j, = , J′ and J″ correspond to three different exchange interac-
tions of host and impurity. Especially, for J J″ = ′ the impurity only
interacts with the nearest neighbor host, this means that the
distribution of impurity can be extended to the normal alternate
distribution (see Fig. 1). So for the single impurity segment, it is a
special case of the compact distribution that the host and impurity

connect alternately. Obviously, the Hamiltonian equation (2) can
be diagonalized, one needs only to diagonalize these segments hn
defined by Eq. (3). There are three kinds of probable segments hn
pure host or impurity segment and host–impurity segment. We
can determine the properties of the pure host and impurity
segment immediately from the normal TIM. For the host–impurity
segment, we propose a trial method to diagonalize the Hamilto-
nian hn ( J J 0″ ≠ ′ ≠ ). We suppose that the numbers of host site and
impurity site are n andm respectively, the length of the segment is
lp.The Hamiltonian equation (3) can be diagonalized by Jordan–
Wigner transformation [19] via expressing Pauli operators by
Fermi operators. After performing a Bogoliubov transformation,
we derived a compact Hamiltonian

h k( )( 1/2),
(4)

n
k

k k∑ Λ η η= −†

where ,k kη η† are fermionic quasi-particle operators, and k( )Λ is the
energy spectrum. We introduce the trial wave functions of host as

j A e e e j n( ) ( ), 1, ,k
ikj i ikjΦ = + = …φ − , where Ak is the normalization

constant. The displacement quantity φ is the function of k to in-
clude the influence of impurity. The wave functions of impurity are

m{ (1), (2), , ( )}Φ Φ Φ′ ′ … ′ , which can be expressed by the wave
functions of host by using the eigenvalue equation [20]. Define the
parameters
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combined the wave function into the eigenvalue equation, we can
get the energy spectra

a b k2 cos , (6)k
2Λ = +

and the displacement quantity e f k f k( )/ ( )i = − −φ , f k( )=
a e be( )k

ikn ik n2 ( 1)Λ − − − . The k is determined by the following se-
cular equation:
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where 1,2ξ and 1,2η are function of k depending on the specific form
of the segment.

We note that the process to resolve the unknown parameters
i i m{ ( ), 1, 2, , }Φ′ = … , Λk, φ and k in subsystem hn is not depen-

dent on the details of the system. For the subsystem hn, no matter
how the impurity distributes, using the eigenvalue equations of hn
we can get all the unknown parameters including the wave
functions of impurity. So it is straightforward to extend the results
to the system with periodic boundary conditions and any dis-
tribution of impurity.

3. Results and discussion

To analyze the influence of the different impurity configuration
on the properties of the system, we calculate the ground states,
excitation energy and the thermodynamic properties. For simpli-

fication, the parameters are renormalized as D J/1
2

λ λ′ = − , J/λ Γ= ,

J J/α = ″ , J J/β = ′ and the energy units is J¼1. In the following text,
we set the length of the system is L 104= , at which the finite size
effect can be ignored.

Fig. 1. The schematic impurity configuration in the free boundary condition,
(a) and (b) refer to the compact and alternate configuration, respectively.
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