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a b s t r a c t

The effects of magnetic correlation on the electric properties in the multiferroic materials are studied,
where the phase transition temperature of the magnetic subsystem Tm is lower than that of the electric
subsystem Te. A Heisenberg-type Hamiltonian and a transverse Ising model are employed to describe the
ferromagnetic and ferroelectric subsystems, respectively. We find that the magnetic correlation can in-
fluence the electric properties above the Tm, and magnetic transverse and longitudinal correlations have
opposite functions. In the curves of temperature dependence of polarization, kinks appear at Tm which is
dominated by the sharp change of decreasing rate of the magnetic correlation. The kinks can be elimi-
nated by an external magnetic field. The magnetic transverse and longitudinal correlations play contrary
roles on the manipulation of polarization by the external magnetic field.

& Elsevier B.V. All rights reserved.

1. Introduction

Since the promising technological potentials in storage devices
and sensors and other fields, multiferroic materials, in which fer-
roelectric (FE) and ferromagnetic (FM) or antiferromagnetic (AFM)
orderings coexist, have been the subject of intensive theoretical
and experimental studies [1–3]. Because of the interaction be-
tween the two kinds of orders in such materials, i.e. the magne-
toelectric coupling, the magnetic properties could be changed by
the ferroelectric ordering or an external electric field, and the
electric properties can also be changed by the fluctuation of spin
ordering or an external magnetic field. The effect of magneto-
electric coupling is particularly strong when temperature is close
to or just below magnetic phase transition temperature and may
result in a change of electric properties [4–6]. In recent studies, it
has been found that pair correlation between magnetic lattice
sites, hereafter referred to as magnetic correlation for brevity,
played an important role on the electric properties [7–11], and
there have been theoretical works devoted to the investigations of
this effect [11–16].

In a multiferroic material, the FE and FM (AFM) subsystems
have their own order–disorder transition temperatures, the values
of which are denoted as Te and Tm, respectively. In the previous
microscopic studies, it was generally believed that the

magnetoelectric coupling would disappear above the lower one of
the Te and Tm [17,18]. For example, if Tm is lower than Te, then the
magnetic correlation (MC) above the Tm was considered to be zero
[19]. In a pure magnetic system, the MC in fact contains two parts:
magnetic transverse correlation (MTC) and magnetic longitudinal
correlation (MLC). Both of them are nonzero at the phase-transi-
tion temperature [20]. Therefore, whether the MC will be zero or
not above the transition point should be carefully studied. This is
necessary in the investigation of the effect of MC on polarization.
In this paper, the effects of the MTC and MLC on polarization are
studied in detail. Our investigation is performed in a multiferroic
material with Te is larger than Tm. We find that the growth of
coupling constant can raise the polarization and reduce the Te,
which demonstrates that MC can influence the electric properties
above the Tm. Such conclusion is different from the previous stu-
dies [8]. Moreover, by evaluating the effects of MTC and MLC on Te,
we find that Te is increased by MTC while reduced by the MLC.

In Section 2 the Hamiltonian is presented. For magnetic sub-
system, a Heisenberg-type Hamiltonian is employed by which
both MTC and MLC can be computed correctly. For the electric
subsystem, the transverse Ising model (TIM) is employed [21,22],
since it is suitable for describing a large class of FEs. We use the
double-time Green's function method which enables us to treat
both subsystems satisfactorily [20,23]. In Section 3, the numerical
results of the temperature dependence of magnetization, MTC,
MLC, and MC are presented, and their effects on the electric prop-
erties are studied. Finally, a summary is presented in Section 4.
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2. The model Hamiltonian and formalism

2.1. The model Hamiltonian

In present discussion, we assume that the studied multiferroic
compound is in a perovskite like structure, and the magnetic and
electric orderings are originated from different units. Therefore,
the multiferroic crystal contains two subsystems: the magnetic
and electric subsystems. There is a coupling interaction between
them. The total Hamiltonian can be presented as [24–27]

= + +H H H H . (1)m e me

Hm and He denote the Hamiltonians of the magnetic and electric
subsystems, respectively. Hme describes the coupling interaction.

The magnetic subsystem is described by a Heisenberg model.
Its Hamiltonian reads [7,8]
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z is the spin operator at site i. Here, J1 and J2 are

the exchange integral parameters between the nearest and next-
nearest magnetic lattice sites. The denotations i j[ , ] and 〈 〉i j, mean
that the nearest and next-nearest neighbors are involved, re-
spectively. μ=B g Hz B z, where g is the Landé factor and μB is the
Bohr magneton, and Hz is the external magnetic field along the z
direction. Here, we use the Bz in calculation instead of Hz. In this
paper, we set Boltzmann constant kB¼1. By modifying parameters
J1 and J2 properly, the magnetic subsystem may show a FM or AFM
configuration.

The electric subsystem is modeled by the TIM, which can be
written as [21–23]

∑ ∑ ∑Ω μ= − − ⋅ −H P J P P E P .
(3)
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Pi
x and Pi

z are the spin-1/2 operators of the pseudo-spins which
obey the commutation relation of convenient spin operators. The
pseudo-spin Pi

z represents the two positions of ferroelectric unit at
the lattice point i with a barrier between them. Pix is responsible
for the tunneling process between two positions, and Ω is the
tunneling frequency. Je denotes the interaction between adjacent
electric lattice sites. Ez represents the external electric field along
the z direction, and μ is the effective dipolar moment of each
pseudo-spin. In this subsystem, the mean electric polarization is
proportional to the statistical average of Piz.

For current discussion, the coupling term Hme is written as [24–
27]

∑ ∑ ∑ ∑= − ⋅ = − ++ −( )H g P P g S S S S P PS S .
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Here, g is the intensity of the magnetoelectric coupling, and
= ±±S S iSi i

x
i
y. Such coupling means that the magnetic and electric

subsystems have independent mechanism. The MTC and MLC are
defined as the statistical averages of the terms ∑ + −S Si j i j[ , ] and

∑ S Si j i
z

j
z

[ , ] , respectively. They are written as = ∑ + −C S ST i j i j[ , ] and

= ∑C S SL i j i
z

j
z

[ , ] . The sum of them is the MC defined as CM¼CTþCL.
The coupling Hamiltonian Eq. (4) indicates that the MC can in-
fluence the polarization directly, and the magnetization is also
affected by the correlation between the pseudo-spins.

2.2. The formalism

We use the double-time Green's function method [20]. It is
applicable to the whole temperature range, and easy to study
various systems. Especially, the MTC and MLC can be evaluated by
means of this method in a satisfactory way. For the magnetic

subsystem, the operators = =+ + − −( )( )A S S B e S e S, ,m e uS
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chosen to construct Green's functions as follows [28,29]:
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The Hm and Hme can merge to be an effective magnetic Ha-
miltonian:
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Roughly speaking, the first term on the right hand side of Eq.
(6) can be regarded as a simple Heisenberg exchange form
− ∑ ⋅′J S Si j i j1 [ , ] , where the effective exchange integral parameter is
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Green's function method is employed following the standard
routine [30–32]. Here we do not intend to present the tedious
formalism. The well-known spectral theorem and its derivative
with respect to time t help us to calculate various thermodynamic
quantities [20].

On the other hand, if He and Hme are merged, we can define an
effective electric Hamiltonian as follows:
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And also an effective coupling constant between nearest elec-
tric lattice sites is defined as follows:
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We use the creation and annihilation operators of Fermion type
+a t( )i and +

+a t( )j to construct Green's functions of electric sub-
system as follows [23]:

′ = 〈〈 〉〉′ + +
+G t t a t a t( , ( ); ( ) . (10)i j i j,

Following the treatment in Ref [23], the relative polarization is
obtained by the simple decoupling approximation:
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Obviously, the expression coincides completely with the usual
MFA.

3. Results and discussions

We assume that the magnetic subsystem is a FM one. The
parameters are chosen as =S 2, =J 20,1 =J 2,2 =J 720,e and
Ω = 50 so that Tm is lower than Te. The coupling parameter g is set
to various values. Parameters used here do not contrapose a given
multiferroic compound, but they are representative for a number
of multiferroic compounds for a qualitative study.

First of all, we investigate the effect of magnetoelectric cou-
pling on the magnetization. Fig. 1 plots the magetizaiton versus
temperature curves at three coupling values. It is shown that Tm
increases with the growing coupling constant g, which is in ac-
cordance with the previous theoretical predications [9,33]. In the
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