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a b s t r a c t

In the present work, we consider the problem of fractional order thermoelastic interaction in a material
placed in a magnetic field and subjected to a moving plane of heat source. The basic equations have been
written in the form of a vector–matrix differential equation in the Laplace transform domain, which is
then solved by an eigenvalue approach. The inverse Laplace transforms are computed numerically and
some comparisons have been shown in figures to estimate the effect of each of the fractional order, heat
source velocity, time and the magnetic field and parameters.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The generalized theories of thermoelasticity, which admit the
finite speed of thermal signal, have been the center of interest of
active research during last three decades. Biot [1] introduced the
theory of coupled thermoelasticity to overcome the first short-
coming in the classical uncoupled theory of thermoelasticity
where it predicts two phenomena not compatible with physical
observations. The theory of couple thermoelasticity was extended
by Lord and Shulman [2] and Green and Lindsay [3] by including
the thermal relaxation time in constitutive relations. The theory
was extended for anisotropic body by Dhaliwal and Sherief [4]. The
counterparts of our problem in the contexts of the thermo-
elasticity theories have been considered by using analytical and
numerical methods [5–17].

Fractional calculus has been used successfully to modify many
existing models of physical processes. One can state that the whole
theory of fractional derivatives and integrals was established in
the second half of the nineteenth century. Various definitions and
approaches of fractional derivatives have become the main pur-
pose of many studies. Youssef [18,19] established the fractional
order generalized thermoelasticity of both weak and strong heat
conductivity in the context of generalized thermoelasticity were
considered. Ezzat and Karamany [20–22] established a new model
of fractional heat equation based on a Taylor expansion of time-

fractional order. In addition, Sherief et al. [23] established a new
model by using the form of the heat conduction law. Kumar et al.
[24] studied the plane deformation due to thermal source in
fractional order thermoelastic media.

In the present paper we have applied the technique of eigen-
value approach developed in [25] to solve a problem of fractional
order theory of generalized magneto-thermoelastic subjected to a
moving plane of heat source. The inversion of Laplace transform
have been carried out numerically by applying a method of nu-
merical inversion of Laplace transform based on Stehfest techni-
que [26]. The variables in physical space–time domain are re-
presented graphically.

2. Basic equation and formulation of the problem

Following Ezzat and El-Karamany [20], the basic equations of
fraction order theory of magneto-thermoelastic medium of perfect
conductivity permeated by an initial magnetic field H are con-
sidered as

The first set of equations constitutes the equations of electro-
dynamics of slowly moving bodies,
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The equations of motion
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The equation of heat conduction with fractional time deriva-
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The constitutive equations are given by

σ μ λ γ δ= + − −e e T T2 [ ( )] , (4)ij ij ij0

where h is induced magnetic field; E is the induced electric field; J
is the current density vector, B is the magnetic inductance vector
and μo is the magnetic permeability; εo is the electric permittivity;
λ μ, are Lame's constants; ρ is the density of the medium; ce is the
specific heat at constant strain; γ λ μ α= +(2 3 ) t and αt is the coef-
ficient of linear thermal expansion; t is the time; T is the
temperature; T0 is the reference temperature; K is the ther-
mal conductivity; τo is the thermal relaxation time;δij is the
Kronecker symbol; σij are the components of stress tensor; ui are
the components of displacement vector and Q is the moving heat
source.

Let us consider a homogeneous isotropic thermoelastic solid at
a uniform reference temperature T0 of a perfect electrically con-
ductivity permeated by an initial magnetic field =H H(0, , 0)0 0 ,
occupying the region ≥x 0 where the x-axis is taken perpendi-
cular to the bounding plane of the half-space pointing inwards. It
assumed that the state of the medium depends only on x and the
time variable t, so that the displacement vector u and tempera-
tures field T can be expressed in the following form:
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Then the Eqs. (2)–(4) take the following form
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Now, we introduce the following non-dimensional variables

η
γ
λ μ

τ η τ

σ
σ

λ μ

μ

γ
ρ η

′ ′ =

′ =
−

+

′ ′ =

′ =
+

′ =

′ =

′ =

x u c x u

T
T T

t c t

h
h

H

E
E
H c

Q
Q

K c

( , ) ( , ),

( )
2

,

( , ) ( , ),

2
,

,

,

,

o o

xx
xx

o

1

0

1
2

0

0 1

4 2

where λ μ ρ η ρ= + =c c K( 2 / ) and ( / ).e1
2

Upon introducing in Eqs. (6)–(8), and after suppressing the
primes, we obtain
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We consider that the medium is subjected to a moving heat
source of constant strength releasing its energy continuously
while moving along the positive direction of the x-axis with a
constant velocity v. This moving heat source is assumed to be the
following non-dimensional form

δ= −Q Q x vt( ), (12)o

where Q o is constant and δ is the delta function. We assume that
the medium is initially at rest. The undisturbed state is maintained
at reference temperature. Then we have
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The boundary conditions can be written as

=
∂

∂
=u t

T t
x

(0, ) 0,
(0, )

0. (14)

Applying the Laplace transform define by the formula
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Hence, we obtain the following system of differential equations
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Eqs. (16) and (17) can be written in a vector–matrix differential
equation as follows [25]:
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