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Abstract In the present paper, an asymptotic approach is used to analyse the main features of

weakly nonlinear waves propagating in a compressible, inviscid, nonideal gas in the presence of

magnetic field. An evolution equation, which characterizes the wave process in the high frequency

domain and points out the possibility of wave breaking at a finite time, is derived. The growth equa-

tion governing the behaviour of an acceleration wave is recovered as a special case. Further, we con-

sider a sufficiently weak shock at the outset and study the propagation of the disturbance given in

the form of a sawtooth profile. It is observed that the non-idealness of the gas causes an early decay

of the sawtooth wave as compared to ideal case however the presence of magnetic field causes to

slow down the decay process as compared to non-ideal non-magnetic case. A remarkable difference

in wave profiles for planar and cylindrically symmetric flows has been observed. The effect of non-

idealness, in the presence of magnetic field, on the formation of shock is more dominant in case of

cylindrical symmetry as compared to planar case.
� 2014 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Discontinuity waves, also known as shock waves, acceleration
waves and weak waves are characterized by discontinuity in

the normal derivative of the flow variable rather than the var-
iable itself. Therefore, for nonlinear systems, the analysis of
these waves has been the subject of great interest both from

mathematical and physical point of view. For the physical

phenomenon modelled by a system of quasi linear hyperbolic
partial differential equations, it is theoretically possible to find
the progressive wave solution. Choquet-Bruhat [1] used the

perturbation method to determine a shockless solution of sys-
tem of quasi linear hyperbolic partial differential equations
that depend upon single phase function. Germain [2], Fusco
[3], Fusco and Engelbrecht [4], and Sharma et al. [5], used

the same technique to analyse the nonlinear wave propagation
in various gasdynamic regimes. Hunter and Keller [6] pre-
sented a method, known as ray method, to determine a

small-amplitude high frequency wave solution of hyperbolic
system. Jena and Singh [7] studied the problem of evolution
of an acceleration wave and a characteristic shock for the sys-

tem of partial differential equations describing one dimen-
sional, unsteady, axisymmetric motion of transient pinched
plasma. A detailed discussion on the method and application
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of asymptotic expansions can be seen in Miller [8] and Sharma
[9]. Singh et al. [10] used perturbation scheme to study the
propagation of weak shock waves in non-uniform radiative

magnetogasdynamics. Singh et al. [11] have studied the prob-
lem of propagation of acceleration waves along the character-
istic path by using the characteristics of the governing system

as the reference coordinate system. Arora et al. [12] used the
method of multiple timescales to obtain the asymptotic solu-
tions to the planar and non-planar flows into a non-ideal

gas. Sharma and Venkatraman [13] studied the asymptotic
decay laws for planar and non-planar shock waves and the first
order associated discontinuities that catch up with the shock.

In the present work, we deal with the study of propagation

of weakly nonlinear waves in a nonideal gas permeated by a
transverse magnetic field with infinite electrical conductivity.
An evolution equation, characterizing the wave process in

the high frequency domain, is derived. The growth equation
for an acceleration wave is recovered as a special case. The
propagation of a sawtooth profile that ends in a tail shock

can be analysed in similar manner.

2. Governing equations

The fundamental equations for one dimensional unsteady
motion of a non-ideal gas in the presence of a transverse mag-
netic field may be written as [14–16].

qt þ mqx þ qmx þ qmmx�1 ¼ 0; ð1Þ

mt þ mmx þ q�1ðpx þ hxÞ ¼ 0; ð2Þ

pt þ mpx þ qd2ðmx þmmx�1Þ ¼ 0; ð3Þ

ht þ mhx þ 2hðmx þmmx�1Þ ¼ 0; ð4Þ

where q is the density, m is the fluid velocity, p is the pressure,
d= (cp/q(1 � bq))1/2 is the speed of sound in non-ideal gas
with c as the adiabatic index, b is the Van der Wall’s constant,

h= lH2/2 is the magnetic pressure with H as the magnetic
field strength, l is the magnetic permeability, t is the time,
and x is the spatial coordinate. Here subscripts denote partial
differentiation unless stated otherwise. The letter m takes val-

ues 0 for planar and 1 for cylindrically symmetric motion.
In matrix notation, Eqs. (1)–(4) can be written as

Ut þ AUx þ B ¼ 0; ð5Þ

where

U ¼

q

m

p

h

2
6664
3
7775; A ¼

m q 0 0

0 m q�1 q�1

0 cp
1�bq m 0

0 2h 0 m

2
6664

3
7775; B ¼

qmmx�1

0
cp

1�bqmmx�1

2hmmx�1

2
66664

3
77775:

ð6Þ

Eq. (5) can be written as

Ui
t þ AijUj

x þ Bi ¼ 0; i; j ¼ 1; 2; 3; 4; ð7Þ

where Ui, Aij, and Bi are components of column vector U,
matrix A and column vector B respectively.

The system of Eq. (7) is hyperbolic and eigenvalues of
the coefficient matrix A are m� c; m; m and m + c. Here
c= (d2 + e2)1/2 is the magneto sonic speed with d =

(cp/q(1 � bq))1/2 as the speed of sound in nonideal gas and
e= (2h/q)1/2 the Alfvén speed. The left and right eigenvectors
of A corresponding to the eigenvalue m + c are

l ¼ ð0; qc; 1; 1Þ; rT ¼ ð1; c=q; d2; e2Þ; ð8Þ

where a superscript means transposition.

3. Progressive wave solution

Let us consider the asymptotic solution of Eq. (7) which exhib-
its the feature of progressive waves. Consider the following
asymptotic expansion

Uiðx; tÞ ¼ Ui
0 þ eUi

1ðx; t; nÞ þOðe2Þ; ð9Þ

where Ui
0 is a known constant solution of Eq. (7) such that

Bi(U0) = 0. The remaining terms of Eq. (9) are of progressive
wave nature. The choice of e depends upon the physical prob-
lem to be studied. Let sch be the characteristic timescale for the

medium and sa be the attenuation time, then we define a
parameter e = sch/sa� 1. The variable n is a ‘‘fast variable’’
defined as n = f(x, t)/e, where f(x, t) is a phase function to

be determined later. It may be noticed that the case e� 1,
which corresponds to the situation in which the characteristic
frequency of the medium is very large than the attenuation fre-
quency of the signal, characterizes a high frequency propaga-

tion [17].
Introducing the Taylor’s series expansion of Aij and Bi in

the neighbourhood of the known constant solution Ui
0 and

using Eq. (9), we get

Aij ¼ Aij
0 þ e

@Aij

@Uk

� �
0

Uk
1 þOðe2Þ; ð10Þ

Bi ¼ Bi
0 þ e

@Bi

@Uk

� �
0

Uk
1 þOðe2Þ: ð11Þ

Substituting Eqs. (9)–(11) in Eq. (7) and cancelling the coeffi-

cient of e0 and e1, we get

Aij
0 � kdi

j

� � @Uj
1

@n
¼ 0; ð12Þ

Aij
0 � kdi

j

� � @Uj
2

@n
þ @Ui

1

@t
þ Aij

0

@Uj
1

@x

� �
f�1x

þUk
1

@Aij

@Uk

� �
0

@Uj
1

@n
þ f�1x Uk

1

@Bi

@Uk

� �
0

¼ 0; ð13Þ

where k ¼ �ft=fx; di
j is the Krönecker delta and the subscript 0

means the quantity involved is evaluated at constant state U0.
Eq. (12) yields the characteristic polynomial k2ðk2 � c20Þ ¼ 0,

providing nonzero eigenvalues ±c0 of A0. Considering the
velocity k ¼ c0 the corresponding left and right eigenvectors
of A0 are given by Eq. (8) with subscript 0. From Eq. (12)

we see that oU1/on is collinear to r0 and therefore U1 may be
written as

U1ðx; t; nÞ ¼ aðx; t; nÞr0 þWðx; tÞ; ð14Þ

representing a solution of Eq. (12). Here a(x, t, n) is the ampli-

tude factor to be determined and the Wi (the components of
the column vector W) are integration constants which are
not of progressive wave nature and therefore can be taken as
zero. Now the phase function f(x, t) is determined by
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