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a b s t r a c t

Measurement precision of a magnetic gradient tensor system is not only connected with the imperfect
performance of magnetometers such as bias, scale factor, non-orthogonality and misalignment errors, but also
connected with the external soft-iron and hard-iron magnetic distortion fields when the system is used as a
strapdown device. So an integrated scalar calibration method is proposed in this paper. In the first step, a
mathematical model for scalar calibration of a single three-axis magnetometer is established, and a least
squares ellipsoid fitting algorithm is proposed to estimate the detailed error parameters. For the misalignment
errors existing at different magnetometers caused by the installation process and misalignment errors aroused
by ellipsoid fitting estimation, a calibration method for combined misalignment errors is proposed in the
second step to switch outputs of different magnetometers into the ideal reference orthogonal coordinate
system. In order to verify effectiveness of the proposed method, simulation and experiment with a cross-
magnetic gradient tensor system are performed, and the results show that the proposed method estimates
error parameters and improves the measurement accuracy of magnetic gradient tensor greatly.

Crown Copyright & 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

Magnetic gradient tensor measurements are predominant over
conventional vector magnetic surveys. Gradient measurements
yield largely gradients from anomalous sources because the back-
ground geomagnetic gradient is low, and they can offer better
spatial resolution than magnetic field vectors and total magnetic
intensity. On the other hand, gradient measurements are most
appropriate as a strapdown device for airborne applications [1].
Because of these superiorities, magnetic gradient tensor systems
have been widely used in civil and military applications [2].

Magnetic gradient tensor systems are always constructed by
multiple vector magnetometers. In the last decades many kinds of
magnetic gradient tensor systems based on fluxgate magnet-
ometers or superconducting quantum interference devices have
been developed, and some tentative experiments have been done
[3–6]. Being restricted by manufacture arts and crafts, magnet-
ometers have problems of biases, different scalar factors, non-
orthogonality of three axes and misalignment errors between the
different sensitive axes [7]. On the other hand magnetic gradient
tensor systems are always mounted in the ferromagnetic vehicle's
structure [8,9], and the magnetometer readings are distorted by
the ferromagnetic elements in the vicinity of the magnetometer.
Hence magnetic gradient tensor errors may be thousands of
nanoteslas and they have to be calibrated and compensated.

Chen et al. [10], Huang and Wu [11], and Pang et al. [12] did
some calibration works for the magnetic gradient tensor system
based on scalar calibration method, but hard-iron and soft-iron
magnetic distortion errors we are ignored. Lv et al. [13] and Pei Yeo
[14] did some compensation works for the soft-iron and hard-iron
magnetic distortions, but errors of the magnetometer itself we are
ignored. Pang et al. [15] accomplished vector calibration for the
magnetic gradient tensor system considering errors of the mag-
netometer itself and magnetic distortions of external ferromag-
netic elements. However, little work has been done on the scalar
calibration of magnetic gradient tensor system considering inter-
nal and external magnetic distortions simultaneously.

In this paper, a scalar calibration strategy is designed and the
calibration process is divided into two steps. Firstly, a single three-
axis magnetometer is calibrated considering errors of the magnet-
ometer itself and magnetic distortions of external ferromagnetic
elements. Secondly, combined misalignment errors between dif-
ferent magnetometers are calibrated. The proposed method shows
good performance in simulation and experiment, and hence it can
be used to improve the measurement accuracy of strapdown
magnetic gradient tensor system.

2. Magnetic gradient tensor measurement principle and
system

Magnetic gradient tensor is spatial rate of change of magnetic
vector field in three orthogonal directions. If B denotes magnetic
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field vector, magnetic gradient tensor Gcan be shown as the
product of two matrices which contain three vector elements:

G¼
∂=∂x
∂=∂y
∂=∂z
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where Bx, By andBzare measured magnetic field components along
three orthogonal directions.

The geomagnetic field and magnetic anomalies caused by the
ferromagnetic matters are magnetostatic fields which do not
contain conduction currents. So the gradient tensor is traceless
and symmetric according to Maxwell's magnetostatic equations.
And all nine elements of the gradient tensor can be calculated
from only five independent gradient measurements.

In real measurement application, magnetic gradient tensor is
deduced from the difference between measurement values of
magnetic field vectors normalized by the separation distance [3].
But high-order derivatives of Taylor series of magnetic field
vectors, which arise by geometric configuration of the vector
magnetometers array and are defined as structure errors, are
neglected during the calculative process. So the structure errors
also affect measurement precision of the magnetic gradient tensor
system. Several different configurations of magnetic gradient
tensor system are analyzed in [16]; simulation results show that
the plane cross tensor structure has the minimal structural errors
that are lesser than those of vector magnetometers. Based on these
research results, a cross-magnetic gradient tensor system com-
prising four tri-axial magnetometers is designed in this paper and
its sketch map is shown in Fig. 1. A right-handed Cartesian
coordinate system is constructed and the baseline distance
between two magnetometers in the same direction is2d.

Estimated elements of the magnetic gradient tensor at the
point Oare shown as follows:
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where Bij; i¼ 1;2;3;4; j¼ x; y; z, denote magnetic vector compo-
nents in the jth direction of the ith magnetometer. The matrix
shown here is not symmetric. Measurement noises and high-order
gradients will create differences between the estimates of Bxy and
Byx. So we average the two estimates and use a truly symmetric
matrix with off-diagonal elements in practice.

3. Calibration and compensation for three-axis magnetometer

3.1. Mathematical model

Three sensitive axes of an actual three-axis magnetometer may
not be perfectly orthogonal and they constitute a non-orthogonal
coordinate system O–X1Y1Z1. Suppose that O–X0Y 0Z0 is an ideal

sensor's orthogonal coordinate system in which OZ0 is defined to
be completely aligned with axis OZ1. The coordinate plane Y1OZ1

is coplanar with the plane Y 0OZ0. ψ denotes angle between the axis
OY1 and OY 0. θ denotes the angle between the axis OX1 and the
plane X0OY 0. Angle between OX0 and projection of OX1 in the plane
X0OY 0 is φ. O–XYZ is the ideal platform frame-orthogonal coordi-
nate system. Sketch map of different coordinates systems is shown
in Fig. 2.

Two of the most significant error sources of three-axis mag-
netometer are that errors of the magnetometers itself being
restricted by manufacture and magnetic distortions of external
ferromagnetic elements such as hard-iron interferences and soft-
iron interferences. Considering these two kinds of error sources, a
mathematical model of magnetometer output could be described
as follows [17]:

Bm ¼ CSFCNOðBþBSIþBHIÞþBm0þωm ð3Þ

where Bm, Bm0, and ωm are, respectively, output, bias error and
measurement noise of magnetometer under the coordinate system
O� X1Y1Z1. B, BSI and BHI are, respectively, geomagnetic field
vector, soft-iron magnetic distortions and hard-iron magnetic
distortions in the coordinate system O� X0Y 0Z0. CSF and CNO are,
respectively, error matrices of scale factors and non-orthogonality.

There are rich literatures about soft-iron interferences and
hard-iron interferences of magnetometers [18]. And the hard-
iron interference can be considered as a constant bias to the
magnetometer output [19]. The soft-iron interferences are gener-
ated by interaction of external magnetic field with ferromagnetic
elements in the vicinity of the magnetometer; they depend on
magnitude and direction of the external magnetic field [20]. We
assume that a time-invariant linear relationship exists between
the soft-iron interferences and the external magnetic field; then
BSI can be written as

BSI ¼ KB¼
αxx αxy αxz

αyx αyy αyz

αzx αzy αzz
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where K is the soft-iron effect matrix, αij; i; j¼ x; y, are the soft-
iron coefficients and they represent the coefficient relating the
field generated in the i-direction in response to the external
magnetic field along the j-direction.

According to eqs. (3) and (4), we can get the following
mathematical model:

Bm ¼ CCBþOþωm ð5Þ

where CC ¼ CSFCNOðIþKÞ represents the combined error coeffi-
cient matrix and O¼ CSF UCNO UBHIþBm0 represents the total bias
vector.

Measurement noises are small enough relative to magnetic
distortions arising by the other error parameters. So a mathema-
tical model can be written as follows when measurement noises

Fig. 1. Sketch map of the cross-magnetic gradient tensor system. Fig. 2. Sketch map of different coordinates systems for magnetometer calibration.
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