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Abstract The modeling of wave propagation in microstructured materials should be able to

account for various scales of microstructure. Based on the proposed new exponential expansion

method, we obtained the multiple explicit and exact traveling wave solutions of the strain wave

equation for describing different types of wave propagation in microstructured solids. The solutions

obtained in this paper include the solitary wave solutions of topological kink, singular kink, non-

topological bell type solutions, solitons, compacton, cuspon, periodic solutions, and solitary wave

solutions of rational functions. It is shown that the new exponential method, with the help of sym-

bolic computation, provides an effective and straightforward mathematical tool for solving nonlin-

ear evolution equations arising in mathematical physics and engineering.
� 2014 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nonlinear evolution equations (NLEEs) are very important
model equations in mathematical physics and engineering for

describing diverse types of physical mechanisms of natural
phenomena in the field of applied sciences and engineering.
For this reason, the search of exact traveling wave solutions

to NLEEs plays very important role in the study of these

physical phenomena. The wave propagation phenomena are
observed in microstructured solids, plasma physics, chemical
physics, elastic media, optical fibers, fluid dynamics, quantum

mechanics, etc. With the rapid development of nonlinear sci-
ence based on computer algebraic system, many effective
methods have been presented, such as, the tanh method [1],

the extended tanh method [2,3], the modified extended tanh-
function method [4,5], the Exp-function method [6–8], the
improved F-expansion method [9], the exp(�U(n))-expansion
method [10–14], the sine–cosine method [15], the modified sim-

ple equation method [16–22], the (G0/G)-expansion method
[23,24], the novel (G0/G)-expansion method [25], new approach
of the generalized (G0/G)-expansion method [26,27], the Jacobi

elliptic function method [28,29], the homogeneous balance
method [30–32], the Hirota’s bilinear method [33], the
homotopy perturbation technique [34] and others.
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The mathematical modeling of wave propagation in micro-
structured solids is also described by nonlinear PDEs and
should be able to account for several scales of microstructure.

If the scale reliance involves dispersive effects and materials
behave nonlinearity, then dispersive and nonlinear effects
may be balanced and thus the solitary wave causes. The exis-

tence and appearance of solitary waves in complicated physical
problems apart from the model equations of mathematical
physics must be analyzed with sufficient accuracy. There is

an amount of paper where the governing equations for waves
in microstructured solids have been derived and the solitary
waves were analyzed [27,35–38]. For instance, the microstrain
wave function u(x, t) in micro-structured solids is characterized

by nonlinear partial differential equation. The governing non-
linear PDE equation (see Ref. [27,37]) for the microstrain wave
function u(x, t) in micro-structured solids is given by

ut t � ux x � ea1ðu2Þx x � ca2ux x t þ da3ux x x x

� ðda4 � c2a7Þux x t t þ cd ða5uxx x x t þ a6 ux x t t tÞ ¼ 0: ð1Þ

where e accounts for elastic strains, d characterizes the ratio
between the microstructure size and the wave length, c charac-
terizes the influence of dissipation and a1; a2; a3; a4; a5; a6 are

constants.
The balance between nonlinearity and dispersion takes

place when d ¼ OðeÞ. If we set c ¼ 0, we have the non-dissipa-

tive case, and governed by the double dispersive equation
[27,37] as follows:

ut t � ux x � efa1ðu2Þx x � a3 ux x x x þ a4ux x t tg ¼ 0: ð2Þ

The aim of this paper was to apply the proposed exponen-

tial expansion method to construct the new exact traveling
wave solutions to the strain wave Eq. (2) for describing various
types of solitary wave propagation in microstructured solids.

The remainder of the paper is organized as follows: In Sec-
tion 2, we give the brief description of the proposed new expo-
nential expansion method. In Section 3, we apply this method
for finding the explicit and solitary wave solutions to the strain

wave equation in microstructured solids. The physical explana-
tions of the obtained solutions and the advantages of the new
exponential expansion method are presented in Sections 4 and

5 respectively. Conclusions are given in the last section.

2. Description of the proposed exponential expansion method

This section presents the brief descriptions of the new expo-
nential expansion method.

Let us consider the NLEE as follows:

Fðu; ut; ux; uxx; ut t; ut x; . . .Þ ¼ 0; ð3Þ

where F is a function of u; ut; ux; ux x; ut t; ut x; . . . and the sub-
scripts denote the partial derivatives of uðx; tÞ with respect to x

and t.
Suppose uðx; tÞ ¼ uðnÞ; n ¼ x� Vt; where the constant V

is the velocity of the traveling wave, then the Eq. (3) reduces

to a nonlinear ordinary differential equation (ODE) for
u ¼ uðnÞ:

Qðu; u0; u00; u000; � � �Þ ¼ 0; ð4Þ

where Q is a function of u; u0; u00; u000; � � � and its derivatives
point out the ordinary derivatives with respect to n.

Let us consider the traveling wave solution of Eq. (4) is of
the form:

u nð Þ ¼
XN
i¼0

Ai exp �U nð Þð Þð Þi; AN–0 ð5Þ

where the coefficients Aið0 6 i 6 NÞ are constants to be evalu-

ated and U = U(n) satisfies the first order nonlinear ordinary
differential equation:

U0ðnÞ ¼ expð�UðnÞÞ þ l expðUðnÞÞ þ k; ð6Þ

where k and l are arbitrary constants.
The value of the positive integer N can be determined by

balancing the highest order derivatives with the nonlinear
terms of the highest order appearing in Eq. (4).

By substituting (5) into (4) and using (6) when required, we

obtain a system of algebraic equations for Ai ð0 � i � NÞ; k; l;
and V. With the help of symbolic computation, such as,
Maple, we can evaluate the obtaining system and find out

the values Ai ð0 � i � NÞ; k; l; and V. It is notable that Eq.
(6) has the following five types of general solutions [10–14]:

UðnÞ¼ ln
�

ffiffiffiffi
H
p

tanh 0:5
ffiffiffiffi
H
p
ðnþn0Þ

� �
�k

2l

 !
; l–0;H¼ k2�4l> 0;

ð7aÞ

UðnÞ¼ ln

ffiffiffiffiffiffiffiffi
�H
p

tan 0:5
ffiffiffiffiffiffiffiffi
�H
p

ðnþn0Þ
� �

�k

2l

 !
; l–0;H¼ k2�4l< 0;

ð7bÞ

UðnÞ¼� ln k
expðkðnþn0ÞÞ�1

� �
; l¼ 0; k–0;H

¼ k2�4l> 0; ð7cÞ

UðnÞ¼ ln �2ðkðnþn0Þþ2Þ
k2ðnþn0Þ

� �
; l–0; k–0;H¼ k2�4l¼ 0; ð7dÞ

UðnÞ ¼ ln nþ n0ð Þ; k ¼ 0; l ¼ 0: ð7eÞ

where n0 is the integration constant.

Thus the multiple explicit solutions to the NLEE (3) are
obtained by means of the Eqs. (5) and (7).

Again, suppose Eq. (4) has solution of the form (5) and

U ¼ UðnÞ satisfies another first order nonlinear ordinary differ-
ential equation:

U0ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ l expð�UðnÞÞð Þ2

q
; k; l 2 R: ð8Þ

By substituting (5) into (4) and using (8) repeatedly, we
obtain a system of algebraic equations for
Ai ð0 � i � NÞ; k; l; V. With the help of symbolic computa-

tion, such as, Maple we can evaluate the resulting system
and find out the values Ai ð0 � i � NÞ; k; l; V. It is notable
that Eq. (8) has the following general solutions:

UðnÞ ¼ � ln �

ffiffiffi
k
l

s
csc h

ffiffiffi
k
p

nþ n0ð Þ
h i !

; k > 0; l > 0; ð9aÞ

UðnÞ ¼ � ln

ffiffiffiffiffiffiffi
�k
l

s
sec

ffiffiffiffiffiffiffi
�k
p

nþ n0ð Þ
h i !

; k < 0; l > 0; ð9bÞ

UðnÞ ¼ � ln

ffiffiffiffiffiffiffi
k
�l

s
sec h

ffiffiffi
k
p

nþ n0ð Þ
h i !

; k > 0; l < 0; ð9cÞ
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