

Ain Shams University

Ain Shams Engineering Journal

www.elsevier.com/locate/asej www.sciencedirect.com

CIVIL ENGINEERING

Resistance of cold-formed steel sections to combined bending and web crippling

Mohamed Salah Al-Din Soliman, Anwar Badawy Badawy Abu-Sena *, Emad Emam Hassan Darwish, Mohamed Saeed Refaee Saleh

Faculty of Engineering (Shobra), Benha University, Egypt

Received 29 March 2012; revised 5 September 2012; accepted 5 October 2012 Available online 23 December 2012

KEYWORDS

Web crippling; Interaction between web crippling and bending moment; Cold-formed sections; Finite element analysis; Design codes **Abstract** Web crippling is a common failure mode in cold formed sections. Interaction between bending and web crippling reduces the load carrying capacity and may control the design. In this research, numerical study on web crippling and interaction between bending and web crippling are performed considering the material and geometric nonlinearities. The study is performed on channel sections subjected to web crippling under interior one flange (IOF) loading conditions. Finite element models are verified against experimental tests, and then extended to predict the web crippling strength of the studied channel sections. FE is used to investigate the interaction between bending and web crippling in C-sections. FE results are employed to investigate the effect of different parameters on sections resistance. It was found that, the strengths predicted by design codes are generally inadequate for channels with a practical web slenderness range. Therefore, modifications were proposed to improve the strength predicted by codes.

© 2012 Ain Shams University. Production and hosting by Elsevier B.V.
All rights reserved.

1. Introduction

Cold formed steel sections are special sections which have high strength to weight ratio. The cold-formed steel C- and Z-sections are the most common sections used in building construction. These sections can be used as secondary beams (purlins) to support the light weight roof covering systems, also can be

^{*} Corresponding author. Tel.: +20 111 067 6655. E-mail address: abbadawy@yahoo.com (A.B. Badawy Abu-Sena). Peer review under responsibility of Ain Shams University.

Production and hosting by Elsevier

used as side girt, cassettes, etc. Many criteria govern the design of such sections such as, moment capacity, deflection, web shear resistance, web crippling, combined bending and shear and combined bending and web crippling.

Flexural capacity of a cold-formed steel beam in general is limited either by the effective section capacity or the lateral buckling capacity, especially when supported laterally at large intervals. On the other hand, web crippling of such beams depends on the cross section parameters (web slenderness ratio, web thickness and inside bend radius to thickness ratio) in addition to the material yield stress and the bearing length to web thickness ratio. Although, the webs of such sections have high depth to thickness ratio, using stiffeners under the concentrated loads is not practical in this type of construction.

M.S.A.-D. Soliman et al.

List of symbols			
C, C1: 20 non-dimensional coefficients		M_C	moment capacity determined as Se F
C	calibration coefficient	M_m	mean value of material factor
CH	web slenderness coefficient	$M_{ m nxo}$	nominal flexural strength about the x-axis
CN	bearing length coefficient	N	bearing load length
CP	correction factor	n	number of tests or models
CR	inside bend radius coefficient	$\overline{P}_{,,}$ $P_{,}$ $P_{,}$	u the ultimate concentrated load or reaction in the
$C\theta$	non-dimensional coefficient;		presence of bending moment.
d, D	overall web depth	PC-Exp	ultimate test load accompanied by bending mo-
h, hw	flat web depth		ment
E	Young's modulus, 21,000 N/mm ²	PFE	predicted finite element load
F	extreme compression or tension fiber at design	P_m	mean value of professional factor for tested com-
	stress		ponent
$F_{0.2}$	proof stress	P_n	nominal ultimate web crippling load or reaction
F_m	mean value of fabrication factor		per web
F_u	ultimate strength of steel	Pult	ultimate crippling load (kN)
F_W	concentrated web load or reaction (kN)	P_w	concentrated load resistance of single web
F_y	design yield stress	ру	design strength in N/mm ²
Fyc	rounded corner yield stress	R	inside bend radius
k	web crippling coefficient	R_n	average value of all test results
L	specimen total length	Se	elastic section modulus of effective section
M	bending moment at the point of application the	t	web thickness
	concentrated load P	β	target reliability index
<u>m</u>	conversion coefficient	θ	angle between plan of web and plan of bearing sur-
\overline{M} , M , M_u the corresponding ultimate bending moment at face			
	the point of the applied ultimate concentrated load	Φ_b	resistance factor for bending
	or reaction, \overline{P} or P_u respectively	Φ_w	resistance factor for web crippling

Therefore, the web crippling is a governing criterion that may control the design.

Theoretical study of web crippling is very complicated because many factors should be considered. These factors are the non-uniform stress distribution under the applied load, the local yielding at the loaded area, the bending due to eccentric loading, elastic and inelastic behavior of the web element, the different web flange restraint and the initial imperfections of the web element, Yu [16]. That is why most of researches on web crippling and combined bending and web crippling are experimental. Recently, with the progress achieved in the field of computer programming, the numerical analysis using an approved finite element tool is a good alternative to the experimental work.

Interaction between bending and web crippling is a common behavior in cold formed steel construction and will be also studied carefully in light of the continuous modifications of web crippling strength prediction. The adequacy of the web crippling and bending interactive formulae of the design codes will be also investigated.

This research is focused on the behavior of cold formed steel C-sections subjected to web crippling and interaction of bending and web crippling under interior one flange loading condition as indicated Fig. 1.

The parameters range of the studied channel dimensions are: web heights (D=100, 150, 200 and 250 mm); web thicknesses (t=2 and 3 mm); inside bend radiuses (R=6 and 9 mm) and constant flange width (b=50 mm). The bearing lengths are (N=25, 50 and 75 mm) in addition to using two different steel yield stresses ($F_v=240$ and 360 N/mm²).

In addition to the mentioned parameters range, two different span lengths are used (L=1000 and 2000 mms) for studying the interaction of bending and web crippling strengths. In this study four different design specifications are included in comparisons, the Australian/New Zealand Standard (AS/NZS-4600), British Standard (BS:5950-5), Egyptian Code of Practice (ECP-LRFD) and North American Specification (NAS).

2. Literature review

Due to its complexity, most researches on web crippling are mainly experimental and numerical. In this section, reviews of the experimental and numerical researches on web crippling and combined bending and web crippling are presented.

Experimental researches on web crippling of cold formed steel sections started in 1939 at Cornell University. Based on the results of these researches, the first American Iron and Steel Institute design code was published (AISI-1946). The first Canadian code for cold formed steel design was presented in 1963, while the first European code was published in 1970s. Experimental researches continued and the design provisions of AISI were updated in 1956, 1960, 1962, 1968, 1980, 1986, 1991 and 1996, while the Canadian code was updated in 1974, 1984, 1989 and 1994 (S136-94) [7]

In most of the current design codes, there are four different load cases considered in design against web crippling. The difference between the four load cases is based on the applied load location and whether the applied loads acting on both flanges or not. The different four load cases are shown in Fig. 2.

Download English Version:

https://daneshyari.com/en/article/815675

Download Persian Version:

https://daneshyari.com/article/815675

<u>Daneshyari.com</u>