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a b s t r a c t

We present a framework for modeling the transport of any number of globally conserved quantities in
any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that
is valid in new regimes (including high-polarization). The framework allows an entropy function to
define a model that explicitly respects the laws of thermodynamics. Three facets of the model are
explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime
of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low
dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative
magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur
is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is
shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1].
Differences among the three forms of the model are illustrated by numerical solution with parameters
corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2];
Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state
solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the
Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of
magnetization transport, and a steady-state solution for the magnetization is shown to be compatible
with Fenske's separative mass transport equation (Fenske, 1932 [6]).

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Magnetization transport for a spin-system in a spatially varying
magnetic field has been studied theoretically [1] and experimen-
tally [7,8]. High-temperature models of spin magnetization trans-
port, such as that of Genack and Redfield, do not apply for systems
with high-polarization. With recent significant enhancements of
the technique of dynamic nuclear polarization (DNP) [9–11], which
has been shown to achieve significant hyperpolarization, models
that can describe the high-polarization regime in a spatially
varying magnetic field are needed.

We present a framework for modeling the transport of any
number of globally conserved quantities in any spatial configura-
tion. We then apply it to obtain a model of magnetization
transport for spin-systems that is valid in new regimes (including
high-polarization). Finally, we analyze the separative quality of the
magnetization transport. A particularly useful feature of the

framework is that specifying an entropy density function comple-
tely determines the system model. Such a function is presented for
a spin-system, and its validity is demonstrated by deriving classical
models from it, which is justification for using it in new regimes
(as we do in Section 3). In Section 2, we introduce the framework.
It is general in the sense that it can be applied to systems with any
number of globally conserved distributed quantities that evolve
over any (smooth) spatial geometry in any number of spatial
dimensions. The laws of thermodynamics are included a priori
such that any specific model based on the framework will be
guaranteed to respect all four laws.

In Section 3, we apply the framework by specifying conserved
quantities, an entropy function, and a spatial geometry for a spin-
system and thereby obtain a new model of magnetization trans-
port in a magnetic field gradient. It accommodates previously
unmodeled regimes of high energy and high polarization, such as
may develop with DNP. The remainder of the section explores the
model in various limits and connects them to previous models.

In Section 4, we analyze the separative quality of magnetiza-
tion transport, highlighting the parallelism between it and the
separative mass transport work that began with Fenske [6].
Magnetization transport in a magnetic field gradient is both
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diffusive and separative, and the latter is of particular interest for
technologies that may be enhanced by hyperpolarization, such as
magnetic resonance imaging (MRI), nuclear magnetic resonance
(NMR) spectroscopy, and magnetic resonance force microscopy
(MRFM). DNP has been used to achieve significant hyperpolar-
ization through transferring polarization from electron-spins
to nuclear-spins. But DNP is still a slow process, taking tens to
thousands of seconds to develop, and it is impeded by magnetic
field gradients, which for certain applications (such as MRFM) is
undesirable. We consider the feasibility of a different technique
in which no polarization is transferred among spin-species,
but in which magnetization is concentrated by the phenomenon
of separative magnetization transport (SMT). We develop the
necessary and sufficient conditions for the SMT of a single spin-
species—most notably, that the magnetic field must be spatially
varying. Taken as a whole, this paper lays the groundwork for an
investigation into how the SMT effect might be enhanced to
produce hyperpolarization.

2. Framework for transport analysis

We will proceed in the coordinate-free language of differential
geometry, which allows the laws of thermodynamics to be
respected explicitly, regardless of spatial geometry or the number
of conserved quantities.

What follows is a necessarily extensive list of definitions and
remarks. As we will see, the mathematical rigor of these defini-
tions will enable and greatly simplify the subsequent theoretical
development.

The following definitions are the elements from which two
propositions are constructed that describe a framework for trans-
port analysis and its adherence to the laws of thermodynamics. In
any specific application of the framework, defining the spatial
geometry, conserved quantities, entropy function, and a space-
time scale will be sufficient to construct a model of transport that
respects the laws of thermodynamics from the following defini-
tions (as detailed in Remark 2).

The elements of the framework are defined in the following
order:

(a) the spatial manifold, metric, and coordinates;
(b) conserved quantities and their local densities;
(c) the entropy density and thermodynamic potentials;
(d) Onsager's kinetic coefficients;
(e) the current of local quantity densities;
(f) the continuity equation for local densities; and
(g) a transport rate tensor and an ansatz further specifying the

kinetic coefficients.

Proposition 1 will describe how the laws of thermodynamics are
satisfied in the definitions and Proposition 2 will assert that the
definitions describe a physically valid model of transport. We
begin with spatial considerations.

Definition 1 (spatial manifold). Let U be a Riemannian (smooth)
manifold, which represents the spatial geometry of a macroscopic
thermodynamic system. We call U the spatial manifold. □

For many applications, a Euclidean space1 Rm is an appropriate
choice for U .
Remark 1 (spatial coordinates). Let φ : U-Rm be some local
coordinate map.2 Typically, we will denote component functions

of φ, defined by φðpÞ ¼ ðr1ðpÞ;…; rmðpÞÞ for some point pAU , as
ðr1;…; rmÞ. These are called local spatial coordinates, and typically
denoted ðrαÞ (see Fig. 1.) □

By definition, the Riemannian spatial manifold U is endowed
with a Riemannian metric, which determines the geometry of U .
Definition 2 (spatial metric). Let g be a Riemannian metric3 on U .
We call g the spatial metric. □

In local spatial coordinates, the metric is written as

g¼ gαβ drα � drβ : ð1Þ

Definition 3 (conserved quantities). Let qARn be the n-tuple
q¼ ðq1;…; qnÞ, where qiAR represents a conserved quantity. □

Definition 4 (standard thermodynamic dual basis). Let the ordered
basis ðε1;…; εnÞ for Rn be

ε1 ¼ ð1;0;…;0Þ; … εn ¼ ð0;0;…;1Þ:
We call this the standard thermodynamic dual basis,4 and it is often
denoted ðεiÞ. □

In the standard basis, with the Einstein summation convention,

q¼ ½qε�iεi: ð2Þ

Definition 5 (local quantity density). Let On be the set of smooth
maps from U � R (where R represents time) to Vn �Rn (i.e. for
each point in space and time we assign a vector in Rn). Given
a vector of conserved quantities q, let ρAOn represent the local
spatial density of each of the conserved quantities q, such that

q¼
Z
U
ρ dv; ð3Þ

where dv is a volume element of U . □

In the standard thermodynamic dual basis ðεiÞ, we write

ρ¼ ½ρε�iεi; ð4Þ
where each ½ρε�i is a function ½ρε�i : U � R-R. The mathematical
structure of ρ assigned in the definition is equivalent to a section
of the product bundle U � R� Vn-U � R. Fig. 2 illustrates this
description, where copies of Vn ¼Rn correspond to each location
in U .

We now turn to entropic considerations.

Definition 6 (local entropy density). Let the local entropy volu-
metric density function s : Vn-R be a function that is nonnegative
and concave. □

The restriction of the local entropy density s to nonnegative
functions satisfies the third law of thermodynamics. Moreover, we
require that s be concave to allow the Legendre dual relationship
that will now be introduced.

At times it is convenient to work with another set of variables
called local thermodynamic potentials. These are significant
because their spatial gradients drive the flow of ρ.

Definition 7 (local thermodynamic potentials). Let Ω : U � R-V
be defined by the relation

Ω¼ ds○ρ; ð5Þ
where the exterior derivative d is taken with respect to the vector

1 See [12, p. 22] and [13, p. 598].
2 See [13, pp. 15–16, 60–65].

3 See [14, p. 23].
4 Although it is an uncommon practice to introduce a dual basis before a basis,

we do so here because the quantities represented by the quantities q and ρ are
more naturally—from a physical standpoint—considered dual to the potentials Ω.
Yet, the quantities naturally arise first in the series of definitions.
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