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ABSTRACT

The effects of the bimodal random field distribution on the thermal and magnetic properties of the
Heisenberg thin film have been investigated by making use of a two spin cluster with the decoupling
approximation. Particular attention has been devoted to the obtaining of phase diagrams and
magnetization behaviors. The physical behaviors of special as well as tricritical points are discussed
for a wide range of selected Hamiltonian parameters. For example, it is found that when the strength of a
magnetic field increases, the locations of the special point (which is the ratio of the surface exchange
interaction and the exchange interaction of the inner layers that makes the critical temperature of the
film independent of the thickness) in the related plane decrease. Moreover, tricritical behavior has been
obtained for higher values of the magnetic field, and influences of the varying Hamiltonian parameters
on its behavior have been elucidated in detail in order to have a better understanding of the mechanism

underlying the considered system.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there has been growing interest both theoretically
and experimentally in the finite magnetic materials especially in
semi-infinite systems and thin films. The magnetic properties of
the materials in the presence of free surfaces are drastically
different from the bulk counterparts. This is because of the fact
that the free surface breaks the translational symmetry, i.e. surface
atoms are embedded in an environment of lower symmetry than
that of the inner atoms [1,2]. If the strength of the surface
exchange interaction is greater than a critical value, the surface
region can exhibit an ordered phase even if the bulk is para-
magnetic and it has a higher transition temperature than the bulk
one. The aforementioned situation has been observed experimen-
tally in Refs. [3-5]. A rigorous review of the surface magnetism can
be found in Ref. [6].

In a thin film geometry, it was experimentally found that
the Curie temperature and the average magnetic moment per
atom increase with the increasing thickness of the film [7,8].
The thickness dependence on the Curie temperature has also
been measured in Co [9], Fe [10] and Ni [11] films. One class of
films which exhibit a strong uniaxial anisotropy [12] can be
modeled using the Ising model. These systems have been
widely studied in the literature by means of several theoretical
methods such as Monte Carlo (MC) simulations [13], mean field
approximation (MFA) [14] and effective field theory (EFT) [15].
Indeed Ising thin films keep wide space in the literature (e.g.
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see references in Ref. [16]). Thin films which do not exhibit a
strong uniaxial anisotropy require to solve the Heisenberg
model in the thin film geometry. But in contrast to the Ising
counterpart, the Heisenberg model in a thin film geometry has
been solved in limited cases. The Heisenberg model on a thin
film geometry with Green function method [17-19], renorma-
lization group technique [20], MFA [21], EFT [22,23] and MC
[24,25], are among them. Besides, critical and thermodynamic
properties of the bilayer [26,27] and multilayer [28] systems
have been investigated within the cluster variational method
in the pair approximation.

Working on the random field distributed magnetic systems
is important. Although it is difficult to realize these systems
experimentally, certain mappings between these systems and
some other systems make these models valuable. The most
obvious one is the similarity between the diluted antiferro-
magnets in a homogenous magnetic field and the ferromag-
netic systems in the presence of random fields [29,30]. Besides,
a rich class of experimentally accessible disordered systems
can be described by the random field Ising model (RFIM) such
as structural phase transitions in random alloys, commensu-
rate charge-density-wave systems with impurity pinning, bin-
ary fluid mixtures in random porous media, and the melting of
intercalates in layered compounds such as TiS, [31]. Also, RFIM
has been applied in order to describe the critical surface
behavior of amorphous semi-infinite systems [32,33] and the
magnetization process of a garnet film [34]. Because of these
motivations, the Ising model in a quenched random field has
been studied over three decades. The model which is actually
based on the local fields acting on the lattice sites, which are
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taken to be random according to a given probability distribu-
tion, was introduced for the first time by Larkin [35] for
superconductors and later generalized by Imry and Ma [36].

On the other hand, there has been less attention paid to the
random field effects on the Heisenberg model. The spin-1/2
isotropic classical Heisenberg model with bimodal random mag-
netic field distribution is studied within the EFT for a two spin
cluster (which is abbreviated as EFT-2) [37,38] and within the EFT
with the probability distribution technique [39]. Similar results
have been obtained such as tricritical behavior. Besides, the
amorphization effect for the bimodal random magnetic field
distributed isotropic Heisenberg model has been studied [40].
Recently, the spin-1/2 anisotropic quantum Heisenberg model
with trimodal random magnetic field distribution has been inves-
tigated within the EFT-2 [41]. All of these works are related to the
bulk systems. Thus, some questions are open for the Heisenberg
model in a thin film geometry such as whether tricritical behavior
exists or not and the behavior of the special point with the random
field distribution.

Thus, the aim of this work is to determine the effect of the
bimodal random magnetic field distribution on the phase dia-
grams and magnetization behavior of the isotropic Heisenberg
thin film. For this aim, the paper is organized as follows: in Section
2 we briefly present the model and formulation. The results and
discussion are presented in Section 3, and finally Section 4
contains our conclusions.

2. Model and formulation

A thin film in the simple cubic geometry is treated in this work.
The schematic representation of the thin film can be seen in Fig. 1.
The system is infinitely long in the x and y directions, while finite
in the z direction. The thin film can be treated as a layered
structure which consists of interacting L parallel layers. Each layer
(in the xy plane) is defined as a regular lattice with coordination
number 4, i.e. each layer of the thin film has a square lattice. The
Hamiltonian of the isotropic Heisenberg model is given by

H= 7<Z>]U(sfsj‘+s{s]¥+sfsf)fZHisf (1)
L] i

where s¥,s” and s denote the Pauli spin operators at a site i. J;;
stands for the exchange interactions between the nearest neighbor
spins located at sites i and j and H; is the longitudinal magnetic
field at a site i. The first sum is carried over the nearest neighbors
of the thin film, while the second one is over all the sites. The
exchange interaction (J;;) between the spins on the sites i and j
takes values according to the positions of the nearest neighbor
spins. Let us denote the intralayer exchange interactions in the
surfaces of the film as J; and all other exchange interactions as J.
This means that all nearest neighbor spins which belong to the
surfaces of the film interacted J; with each other, while all other
nearest neighbor spins have exchange interaction J5.
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Fig. 1. Schematic representation of the thin film which has thickness L=5.

Magnetic fields are distributed according to a bimodal distribu-
tion function to a lattice site which is given by

P(H;) = 1[8(H;—Ho)+ 8(H;+Ho)] (2)

where § stands for the delta function. This distribution distributes
to magnetic field Hy half of the lattice sites and —Hy the remaining
half of the lattice sites randomly.

The simplest way for solving this system within the EFT
method is using the EFT-2 method [42] which is a two spin cluster
approximation within the EFT method. This method is a general-
ized form of the earlier formulation for the Ising model [43]. By
following the same procedure given in Ref. [23] we can arrive at
the magnetization expressions of each layer of the film as

my =(63 1622)F1(X. ¥, Ho)lx— 0y =0

My = (2103 ;024 1)F2(X. ¥, Ho)lx — 0y = 0,k =2,3,....L—1

my =(02,1-103 )F1(X.¥.Ho)lx— 0y —o- 3
Here m; (i=1,2,...,L) denotes the magnetization of the ith layer.
The operators in Eq. (3) are defined via

O1 = [Age +MBi[Agy +1mByy ] 4)
where [=1,2,...,L and

Akrn = COSh(]ka)
Bym =sinh(Jy V), k=1,2; m=x,y. (5)

The functions in Eq. (3) are given by

Fa(ty.Ho)= [ dHydHaP(H)P(HoF 0.y, Hi Ha) ®)
where
sinh(Xo)

x,v,H{,Hy) = 7
Jax.y. i Ha) cosh(sXo)+exp(—24],) cosh(sY") @
and where
Xo=x+y+H;+H;
Yy =[4);+(x—y+H; —Hy)’1'? (8)

with the values n=12. In Eq. (7), p=1/(kgT) where kg is the
Boltzmann constant and T is the temperature.

Magnetization expressions given in the closed form in Eq. (3)
can be constructed via acting differential operators on related
functions. The effect of the exponential differential operator on an
arbitrary function G(x) is given by

exp(aV)G(x) = G(x+a) 9)
with any constant a.

With the help of the Binomial expansion, Eq. (3) can be written
in the form
6 2

mp= Y Y Kip,qmim]
p=0g=0

2 6 2
me= Y Y Y Ko(p.g.ymf_ mimj_,
p=0g=0r=0

6 2
m= Y ¥ Ki(p.gmim]_, (10
p=0g=0

where k is not equal to 1 or L and

3 03 1 1
Kipp= Y ¥ ¥ ¥ k(i kDdpisjdgrr
iZ0j=0k=01=0

1 1 3 3 1 1
Kz(p, q, r= Z Z Z Z Z kz(i,j, k, l, m, n)ép,i+j5q,k+[51',m+n (1 ])
i=0j=0k=0l=0m=0n=0

and

3
ki(p,q.r,5) = < p> < a )A?x‘ PAS, Ay Ay B BY B5,BS,
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