
CIVIL ENGINEERING

Stability behavior and free vibration of tapered columns

with elastic end restraints using the DQM method

Mohamed Taha 1, Mahmoud Essam *

Dept. of Eng. Math and Physics, Faculty of Engineering, Cairo University, Egypt

Received 8 July 2012; revised 24 September 2012; accepted 9 October 2012

Available online 11 January 2013

KEYWORDS

Tapered column;

End restraints;

Differential quadrature;

Critical load and natural

frequencies

Abstract The stability behavior and free vibration of axially loaded tapered columns with rota-

tional and/or translational end restraints are studied using the differential quadrature method

(DQM). The governing differential equations are derived and transformed into a homogeneous sys-

tem of algebraic equations using the DQM technique. The boundary conditions are discretized and

substituted into the governing differential equations, then the problem is transformed into a two

parameter eigenvalue problem, namely the critical load and the natural frequency. The solution

of the eigenvalue problem yields the critical load for the static case (x = 0) and yields the natural

frequencies for the dynamic case with a prescribed value of axial load (Po < Pcr). The obtained

solutions were verified against those obtained from FEM and found in close agreement.
� 2012 Ain Shams University. Production and hosting by Elsevier B.V.

All rights reserved.

1. Introduction

Many practical engineering applications are very sensitive to

the weight of the structural elements for different reasons. In
space shuttles, the weight of different structural element is
optimized as functional requirements, while in ordinary struc-

tures the weight optimization is needed for architectural and/
or economical issues. To optimize the weight of structural ele-
ments in such applications, elements with non-prismatic con-

figurations are commonly used. It is very difficult to obtain
closed form solutions representing the behavior of such non-

uniform elements under the effect of static and dynamic loads.
Often, to obtain closed-form solutions, many idealizations are
introduced to simplify the mathematical treatments yielding
mathematical models that misrepresent physical models. In

addition, the conventional idealization of the end conditions
(fixed–hinged–clamped–free) may not represent most situa-
tions where support movements are expected and need to be

considered in the analysis. Near optimum configurations are
studied by many researchers to obtain both stability and vibra-
tion behavior of structural elements. Analytical solutions for

simple cases of prismatic and non-prismatic elements with elas-
tic end restraints are found in literature [1–3].

Taha and Abohadima [4] studied the vibration of non-uni-

form shear beam resting on elastic foundation. Semi-analytical
methods such as series solutions are suggested to obtain
analytic expressions for frequencies and mode shapes of
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non-uniform beams resting on elastic foundation [5]. Numeri-
cal methods such as the perturbation method [6], Ritz method
[7], the finite element method [8–10] and the differential quad-

rature method [11,12] are used to study certain configurations
of such models.

On the other hand, the great expansion in the power of the

personal computers and availability of solving algorithms add
many advantages to numerical techniques. The differential
quadrature method (DQM) is a very efficient numerical meth-

od with simple straightforward formulation that needs very
limited memory storage and computational time to obtain re-
sults with accuracy fair to practical applications.

In the present work, the stability and vibration behavior of

axially-loaded tapered columns with translational and/or rota-
tional elastic end restraints are studied using the DQM. The
addressed problem was previously solved using the FEM for

free vibration of beams (no axial load) [9]. The main differ-
ences between the present work and the previous one are the
method of solution, the implementation of translational elastic

end restraints as well as the presence of the axial load into pres-
ent analysis. The boundary conditions are discretized and
substituted into the governing differential equations. The ob-

tained results are verified against the FEM results and are
found to be in close agreement. The effects of numerous ta-
pered configurations for different boundary conditions on
the load and frequency parameters are investigated.

2. Formulation of the problem

2.1. Vibration equation

The free vibration equation of a non-prismatic column loaded

by an axial force Po, shown in Fig. 1, is given as:
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where I(X) is the moment of inertia of the column cross section
at X, q is the mass density per unit volume, E is the modulus of

elasticity, A(X) is the area of cross section at X,Y(X, t) is the
lateral displacement, Po is the axial load acting on the column,
X is the distance along the column and t is time.

Using dimensionless parameters x= X/L and y = Y/L,
Eq. (1) is transformed to:
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The solution of linear partial differential Eq. (2) is obtained
by employing both the separation of variables and the differen-

tial quadrature methods. The first step consists in representing
the distribution of the lateral displacement by two independent
functions, one describing the spatial variation (mode shape

function) and the other represents the time variation. The sec-
ond step consists in using the DQM method to transform the
governing differential equation into a homogeneous system of

N algebraic equations solved numerically according to the
boundary conditions.

2.2. Boundary conditions

The dimensionless elastic end restraints at x = 0 are related to
the derivatives of lateral displacement at the column ends as:

kT0yð0; tÞ ¼ �
@

@x

EIo

L3

@2yð0; tÞ
@x2

� �
; ð3aÞ

kR0
@yð0; tÞ
@x

¼ EIo
L

@2yð0; tÞ
@x2

: ð3bÞ

Also, the dimensionless elastic end restraints at x = 1 are
expressed as:
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where kT0 and kTL are the lateral elastic stiffnesses at x = 0, 1
respectively, Io is the moment of inertia of the column cross

section at x= 0 and kR0 and kRL are the rotational elastic stiff-
nesses at x = 0, 1 respectively.

Following the separation of variables analogy, the solution

of Eq. (2) may be assumed as:

yðx; tÞ ¼ yo/ðxÞwðtÞ; ð4Þ

where /(x) is the linear mode function, w(t) is a function rep-
resenting the time variation and yo is the dimensionless vibra-
tion amplitude (obtained from the initial conditions).

Substituting Eq. (4) into Eq. (2), Eq. (2) is separated into:
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where x is the separation constant which represents the natu-
ral frequency.

The solution of Eq. (6), assuming at t= 0, w = 1.0 and dw/
dt= 0 is:

wðtÞ ¼ cosðxtÞ: ð7Þ

The general solution of Eq. (5) depends on the distribution
of the section geometry along the column. Fig. 1 shows the
case of a symmetric tapered column, where the depth of the

column increases lineally from do at x = 0 to d1 at x = 0.5,
then decreases linearly form d1 at x = 0.5 to do at x = 1, while
the width of the column b is assumed constant, then:

dðxÞ ¼ dogðxÞ; ð8Þ

where

gðxÞ ¼
1� 2xð1� aÞ for 0:0 6 x 6 0:5

2aþ 2xð1� aÞ � 1 for 0:5 6 x 6 1:0

�

and a = d1/do is the tapering ratio.

Using the distribution of section geometry expressed in Eq.
(8), the distribution of area and moment of inertia of the col-
umn cross section are given as:

Figure 1 Axially-loaded tapered column with elastic end

restraints.
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