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a b s t r a c t

The two-time Green function method is employed to explore the phase diagram and the magnetic-field-
induced quantum criticality of a three-dimensional spin-one planar ferromagnet with easy-axis single-
ion anisotropy. We adopt the Tyablikov and Anderson-Callen decouplings for higher order exchange and
single-ion anisotropy Green functions, respectively. The central finding is that, within a characteristic
range of the anisotropy parameter values, reentrant phenomena occur in the phase diagram close to the
quantum critical point producing a sensible change of the conventional quantum critical scenario.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Heisenberg model with different types of exchange aniso-
tropies has been the subject of intensive studies to describe the
properties of several magnetic compounds. In this context, experi-
ments have shown that in complex magnetic materials crystal
anisotropy fields exist which play an important role in determin-
ing their thermodynamics properties [1–7]. Theoretically, a suita-
ble description of such materials can be performed including, in
the Heisenberg model with exchange anisotropy, additional aniso-
tropic crystal fields as easy-plane or easy-axis single-ion aniso-
tropy [6,8–12]. In this context, the planar ferromagnet (PFM), i.e. a
XXZ model with in-plane exchange interactions greater than the
longitudinal ones, is of broad interest as a starting point due to its
numerous applications [13–23]. This model, without any further
anisotropy, exhibits a magnetic-field induced quantum phase
transition (QPT) and the related quantum critical properties,
including the low-temperature phase diagram, have been studied
with different approaches [13–23]. It is, however, inadequate for a
more accurate study of magnetic materials with a complex
crystalline structure and may be very useful for practical situations
to investigate the effects of single-ion anisotropy on the magnetic-
field-induced quantum criticality (QC) of PFM.

In the present work we perform such a study by using the two-
time Green function (GF) method at the level of the Tyablikov
decoupling (TD) [24,25] for the exchange interaction contribution,

and the Anderson-Callen decoupling (ACD) [26] for the single-ion
anisotropy, to close the chain of equations of motion. Interestingly we
will show that, within this approximation, a non-conventional
quantum critical scenario involving reentrant phenomena emerges
when the easy-axis crystal-field anisotropy parameter ranges within
a peculiar interval of values.

Reentrant phenomena are found to occur in the phase diagrams
of a wide variety of materials stimulating recently a lot of experi-
mental and theoretical interest. The term “reentrant” refers to a
phase transition to an ordered phase (OP) at some temperature
followed by a transition to a disordered phase (DP) at a lower
temperature. Reentrant phase diagrams have been observed, for
instance, in complex ferromagnetic and antiferromagnetic systems
with different types of anisotropies and applied magnetic fields,
[27–29], superconducting compounds [30–33], liquid crystals [34]
and in many other systems [35–39]. From a theoretical point of
view it is not easy to find suitable models providing reentrancies in
the phase diagrams so that the proper description of reentrant
phenomena poses challenges to microscopic physics for a variety of
condensed matter systems. In order to construct an appropriate
model, the strategy is to consider in the Hamiltonian suitable
competing terms which are expected to generate the microscopic
mechanism underlying the specific nature of the reentrant behavior
under study. In spite of the intrinsic difficulties typical of these
complex phenomena, different mechanisms for reentrance in the
phase diagrams have been suggested depending on the physical
situations. As selected examples, we mention here models for solid
hydrogen with quantum fluctuation-induced reentrance [40], semi-
conductors with reentrant ferromagnetism [41], reentrant charging
energy effects in granular superconductors [42], spin-glass [43] and
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random-bond spin lattices [44] with frustration, doped lamellar
antiferromagnets [36], complex spin systems with uniform [45] and
random [46] fields with single-ion anisotropy. Here, we will show
that the PFMwith easy-axis single-ion anisotropy in the presence of
a longitudinal magnetic field provides an instructive example for
the possible occurrence of reentrant phenomena in the influence
domain of magnetic-field induced QCPs. The outcome is particulary
interesting because it points out that the competition between the
quantum critical fluctuations and the single-ion anisotropy ones is
responsible for the reentrance in the phase diagram. In spite of the
lack of a direct experimental evidence of this reentrant mechanism,
we believe that it may be adopted in exploring other magnetic
systems which exhibit a field-induced QCP at fixed values of the
single-ion anisotropy parameter.

The paper is organized as follows. In Section 2 we introduce the
spin model and derive the basic relations arising from the GF
framework. Section 3 is devoted to obtain the phase diagram of
the model and to point out its peculiar reentrant structure by
variation of the anisotropy parameter via both numerical findings
and analytical estimates. In Section 4 QC for selected values of the
single-ion anisotropy parameter involving reentrant phenomena is
analyzed in detail. Finally, in Section. 5, concluding remarks
are drawn.

2. The model and the two-time Green's function framework

The PFM with single-ion anisotropy here considered is
described by the Hamiltonian

H¼ �1
2

∑
N

i;j ¼ 1
½ JijðSxi Sxj þSyi S

y
j ÞþKijS

z
i S

z
j ��D ∑

N

i ¼ 1
ðSzi Þ2�h ∑

N

i ¼ 1
Szi ; ð1Þ

where Sαi ðα¼ x; y; zÞ are the components of the vectorial spin

operator S
!

i at site i of a three-dimensional cubic lattice with N

sites and ½Sαi ; Sβj � ¼ iεα;β;γδijS
γ
i (εα;β;γ is the usual Levi–Civita symbol)

are the spin commutation relations. The FM exchange couplings Jij
and Kij (with Jii ¼ Kii ¼ 0) satisfy the inequality Kijo Jij, D is the
single-ion uniaxial anisotropy parameter and h is the applied
longitudinal magnetic field. We focus here on the easy-axis
anisotropy with D40. The easy-plane anisotropy case, with
Do0, has been discussed in [47].

We now introduce the retarded two-time GF for commutator
[24,25]

Gijðt�t0Þ ¼ � iθðt�t0Þ〈½Sþ
i ðt�t0Þ; S�

j �〉
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where AðtÞ ¼ eiHtAe� iHt , θðxÞ is the step function, 〈⋯〉¼
Trð⋯e�βHÞ=Trðe�βHÞ denotes a canonical average and β¼ 1=T is
the inverse temperature.

The equation of motion for the time Fourier transform
GijðωÞ ¼ R1
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i jS�
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where m¼ 〈Szi 〉 is the longitudinal magnetization per spin.
For the higher order GFs in Eq. (3) we assume the TD [24,25]

〈〈SzhS
þ
k jS�

j 〉〉ωC 〈Szh〉〈〈S
þ
k jS�

j 〉〉ω for the exchange interaction and the
ACD [26] for spin-one to decouple the single-ion anisotropy term,
〈〈Szi S

þ
i þSþ

i Szi jS�
j 〉〉ωC 〈Szi 〉〈ðSzi Þ2〉〈〈Sþ

i jS�
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Then, working with the Fourier transforms GijðωÞ ¼ ð1=NÞ∑k

exp½ik � ðri�rjÞ�G? ðk;ωÞ and XðkÞ ¼∑rXðjrjÞeik�r (where X ¼ J;K),
with the wave-vectors k ranging within the first Brillouin zone
(1BZ), the equation of motion for the transverse GF in the

ðk;ωÞ-Fourier space G? ðk;ωÞ can be easily diagonalized providing
the solution

G? ðk;ωÞ ¼ 2m
ω�ωk

; ð4Þ

with ω-ωþ iε ðε-0þ Þ for retarded GF. In this equation

ωk ¼ω0þm ½Jð0Þ� JðkÞ� ð5Þ
is the energy spectrum of the undamped spin-excitations and

ω0 ¼ h�m½Jð0Þ�Kð0Þ� 〈ðSzi Þ2〉D� ð6Þ
provides the energy gap.

Using the identity ðSzi Þ2 ¼ 2�Szi �S�
i Sþ

i , the spectral theorem
[24,25] provides

〈ðSzi Þ2〉¼ 2�mð1þ2ΦÞ; ð7Þ
with
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Then, the energy gap can be conveniently written as

ω0 ¼ h�mHðmÞ; ð9Þ
where

HðmÞ ¼ Jð0Þ�Kð0Þ�2DþmDð1þ2ΦÞ: ð10Þ
For next developments it is essential to obtain an explicit

expression for m in terms of correlation functions related to the
original GF. This can be obtained by using the Callen method [48]
originally proposed for the isotropic Heisenberg model. It is based

on the introduction of the generalized GF 〈〈Sþ
i ðt�t0Þ; eaSzj S�

j 〉〉

where a is an arbitrary parameter to be set to zero at the end of
calculations. For our anisotropic XXZ model with spin S¼1 the
suitable relation for m is [47]

m¼ 1�Φþ 3

ð1þΦ�1Þ3�1
¼ BðΦÞ ð11Þ

with the asymptotic expansions for the function

BðΦÞC
1�Φþ3Φ3þ⋯; Φ{1
2
3Φ

1� 1
2Φ

þ 1

6Φ2 þ⋯
� �

; Φc1;

8><
>: ð12Þ

which will play a relevant role. Eqs. (8)–(11) constitute a set of
self-consistent equations to determine G? ðk;ωÞ; ωk; m, and other
relevant thermodynamic quantities [24,25] as functions of T and h,
for fixed single-ion anisotropy parameter D.

The basic quantity to explore the static and dynamic in-plane
properties of our spin model is the transverse GF (4). This provides
the dynamical transverse susceptibility

χ? ðk;ωÞ ¼ �G? ðk;ωÞ ¼ 2m
ωk�ω

; ð13Þ

and the static one

χ? ðT ;hÞ ¼ χ? ðk¼ 0;ω¼ 0Þ ¼ 2m
ω0

; ð14Þ

where stability (χ? 40) requires ω0Z0, ω0 ¼ 0 defining the
stability boundary. By inspection of Eq. (9), it follows that the
equality ω0 ¼ 0 is physically possible for h40 and m40 only if
HðmÞ40, which is the basic condition for the existence of a field-
induced QCP.

When mðT ;hÞ is known, the longitudinal susceptibility will be
given by χ J ðT ;hÞ ¼ ð∂m=∂hÞT and other relevant quantities, as the
free energy, specific heat, etc. can be easily derived by using
known thermodynamic relations [24,25]. One can also obtain the
transverse correlation length ξ? which, for short-range
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