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a b s t r a c t

Due to the quasi-classical kinetic equation (QKE) for the magnon distribution function to calculate the
velocity of the domain wall motion V in magnetic fields H4Ha , where Ha� magnetic anisotropy field.
BasQ5 ed on the comparison of this formula for Vthe analytic expression of relaxation constant α in Landau–
Lifshitz–Gilbert equation was found. We used the detected correlation between the system's entropy and
the environment's resistance force, and obtained an expression for the spin-lattice braking force that is
applied to the moving domain wall. We calculated the mobility ratio of the domain wall.

& 2014 Published by Elsevier B.V.

1. Introduction

It is notable that despite the century-long history of studies
concerning the properties of the domain structure (for example,
see papers [1,2]) and monographs [3–7], for some reason there are
no papers on quasi-classical calculation of relation between

velocity of the domain wall V
!

and magnetic field H
!

. Though
many researchers calculated the speed of the domain wall, the
classical work in this field is apparently the work byQ4 Thiele [1],
where it was obtained the general formula for the speed of domain
wall, which is valid for any speed value, not just for low ones. Since
the ultimate goal of our work is to calculate phenomenologically
introduced constant α which is involved in Landau–Lifshitz–

Gilbert ∂M
!

=∂t ¼ γe½H
!

ef � M
!�þα=M0½M

!� ð∂M!=∂tÞ�, where M
!�

magnetization density (magnetic moment per unit volume),
γe ¼ ge=2mc, g� Lande factor, e� electron charge, m� its mass,
c� light velocity, M0� spontaneous magnetization of ferromag-

netic, H
!

ef � effective magnetic field, influencing magnetic

moment density M
!

and being defined as functional derivative

from free energy of magnetic F according to magnetization M
!

,

which negative, i.e. H
!

ef ¼ �δF=δM
!

, then it would be quite logical
to preliminary study correctness of our approach.

Generally speaking, only the correspondence between theoretical
calculations and experimental data can serve as the main criterion of
the correctness of the results below. In fact, the estimate value of
motion velocity of the domain wall in the external magnetic field,

expressed as motion μ, provided that μ is calculated analytically,

allows connecting V
!

to H
!

and so finding the sought proportionality
factor. Since, according to known dependence V ¼ ðgeδ=2mcαÞH,
where δ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jex=βμeM0

p
� thickness of the domain wall, a� atom

spacing, μe ¼ ℏγe� Bohr magneton, then after setting μtheor: equal to
proportionality factor V=H¼ geδ=2mcα, we can immediately find the
sought analytic expression for constant α, involved in LLG equation.
Thus, the problem becomes quite clear, and we can begin solving it,
that is, computing velocity V .

Preliminary we should say a few words concerning the theory
of domains. Weiss introduced the concept of the domain structure
in 1907, and L.D. Landau and E.M. Lifshitz proposed the full domain
thermodynamic theory in 1935. Under this model, the average
domain size b and thickness of domain wall δ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jex=βμeM0

p
were calculated, as a result of competition between the exchange
interaction of magnetic atoms Jex with anisotropy energy. βμeM0.
At that, the average size of domain b was found under minimum
condition of free energy by this parameter. In the result it

appeared that b¼
ffiffiffiffiffi
lδ

p
, where l� size of ferromagnetic along y

axis (see Fig. 1) which is perpendicular to the figure.
As specified in [6], the motion velocity of the domain wall can be

defined by simple formula V ¼ μH, where μ� mobility of the wall in
the magnetic field H. Here, the value of the mobility coefficient is as
follows: μ¼ eτ*=m, where e� electron charge,m� its mass, and τ*�
certain invariable having time dimensionality. Its relation to constant α
can be easily found if applying classic formula for domainwall velocity
V ¼ ðgeδ=2mcαÞH. From this comparison we can see that τ*¼
gδ=2cα. Based on the specified formula, for values e¼ 4:48U
10�10SGS;m¼ 0:9U10�27g; c¼ 3U1010 сm=s; g¼ 6; δ¼ 10�6сm;

α¼ 10�2; τ*¼ 10�14 s;and the velocity value is appeared to be
approximately 103 H. If the magnetic field is about one Ersted, the
velocity of the domain wall is about 10 m/s.
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Theoretically such velocity value is quite acceptable if you
remember the Brockhaus experience, when the motion of domain
walls during their destruction in a magnetic field exceeding an
anisotropy field, is accompanied by the rustle occurring as a result
of chaotic motion, which lasts for quite visible time from a range of
human hearing, right up to seconds.

At the same time if you pay attention to the numerical value of
αcoefficient, which we would accept for evaluation, it is possible
to make conclusion that the order of its value is found out to be a
little undervalued and the most acceptable value of Gilbert
constant should be seemingly around α¼ 1C10.

These arguments lead us back to this problem again and
consider calculating constant α and velocity Vas a certain function
of the physical parameters of the ferromagnetic dielectric.

We would like to note, that the main objective of the work is to
calculate the relaxation constant α, and not the speed of domain
wall V

!
. On the other hand, our problem requires to determine the

link between V
!

and the magnetic field H
!

. It means that we need
to calculate the mobility ratio μ, which, in its turn, is related to the
Hilbert constant α. As a result we will solve the problem. Its
solution is based on the use of quasiclassical kinetic equation that
will let us calculate the system's entropy and correlate its with the
environment's resistance force. This problem was first solved in
the work [8] therefore results of the article [8] will help us
determine the desired relation μðαÞ.

2. Formulation on the problem and Its solution

Imagine easy-axis ferromagnetic dielectric, the easy magneti-
zation axis of which is chosen as axis z. We will direct external
magnetic field H also along this axis, and present the model
domain structure in form of planar-parallel alternate zones
demonstrated in Fig. 1. The width and height of domain is denoted
by letter b, and the thickness of the domain wall is denoted by δ
(see the text above and [2]).

The order of magnitude of magnetic anisotropy constant β is easy
to evaluate based on the following simple considerations. In fact, if
the spin (orbital interaction of magnetic atoms) is (see [3])

VSL ¼ B S
!

L
!

, where B� spin energy of orbital interaction, S
!� spin

operator, and L
!� orbital moment operator of atom, then the spin

energy of orbital connection must be equal around B�
μ2
e=a

3 ¼ 1=4ðu=cÞ2ℏ=ma2, where the average speed of electrons in
an atom is u¼ e=

ffiffiffiffiffiffiffi
ma

p
. If we use εоrb to denote the average energy of

the orbital motion of electron, which can be defined as εоrb ¼ ℏ=τ,

where τ� the orbit time of electron around the core, while
τ¼ 2πa=u, and u¼ e=

ffiffiffiffiffiffiffi
ma

p
, then we get that εоrb ¼ ℏe=2πa

ffiffiffiffiffiffiffi
ma

p

and according to the general principals of perturbation theory [4], the

anisotropy energy can be presented as Va ¼ 〈B S
!

L
!

〉2=2εоrb, where
the angular brackets mean averaging over fast orbital motion. As a

result we find out that Va ¼ 〈B S
!

L
!

〉2=2εоrb ¼ B2S2z=2ð2Lþ1Þεоrb
∑L

ML ¼ � LM
2
L ¼ B2LðLþ1Þ=6εоrbS2z . Next, to consider the opportunity

of temperature phase transition of ferromagnetic from the easy-axis
state to the easy-plane one, we present average spontaneous
magnetization of an atom M0 ¼ ðμe=a

3ÞS as M0 ¼ ðμe=a
3Þ

Sð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT=TcrÞ�1

p
Þ, where Tcr� temperature of phase transition “easy-

axis” – “easy-axis” (see [3, p. 201]). In view of these circumstances
the sought anisotropy energy will be

Va ¼
β0

2
T
Tcr

�1
� �

S2z ; ð1Þ

where the sought constant will be

β0 ¼
πμ4

e LðLþ1Þ ffiffiffiffiffiffiffi
ma

p

3a5eℏ
: ð2Þ

If we insert the values of all parameters here, viz,
μe ¼ 1:66U10�20SGS; a¼ 3U10�8сm; e¼ 4:48U10�10SGS;

m¼ 0:9U10�27g; L¼ 2, then we get the following estimate

β0 ¼ 2:27U10�16SGS: ð3Þ

It means approximately one degree Kelvin.
As a rule, when solving the relevant problems of the magnet-

ism theory [5,6], in terms of the macroscopic examination, it is not
anisotropy constant which is used but its value per unit volume.

If we denote this constant by K as in [3], which can be defined
as K ¼ β0=a

3, then instead of (2) we will get

K ¼ πμ4
e LðLþ1Þ ffiffiffiffiffiffiffi

ma
p

3a8eℏ
: ð4Þ

According to the estimate (3) for a¼ 3U10�8cm we will get

K � 8:4U106SGS: ð5Þ

Therefore, the extrapolated to zero constant of anisotropy K , as
it follows from the above considerations, is very well coherent
with the results of its measurements, in particular for hexagonal
cobalt, which is also noted in [3, p. 201].

All the above considered, the total free energy of the easy-axis
ferromagnetic (i.e. as ToTcr) can be written down as follows:

Fло ¼
Z
Ω

α
2

∂Mi

∂xk

� �2

� K

2M2
0

1� T
Tcr

� �
M2

z þ
K1

4M4
0

M4
z �MzH

" #
dV ; ð6Þ

where K1 � magnetic anisotropy constant based on the following
magnetization anharmonicities Mz .

In case the temperature exceeds the critical point, i.e. T4Tcr , as
can be seen from (6), it is energetically beneficial for an easy-axis
ferromagnetic to transit to anisotropy state like “easy-plane” with
free energy.

Fep ¼
Z
Ω

α
2

∂Mi

∂xk

� �2

� K

2M2
0

T
Tcr

�1
� �

ðM2
x þM2

y Þþ
K1

4M4
0

M4
z �MzH

" #
dV :

ð7Þ
where magnetization now lies in plane x�y.

As it can be seen from (6) and (7), jump in entropy at point
T ¼ Tcr equals to ΔS¼ K

2Ω, and it is the point of first-order phase
transition.
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Fig. 1. Schematic images of the planar domain wall in form of alternate plane-
parallel zones. The speed of each domain is directed along axis x. External magnetic
field is oriented along axis z.

S.O. Gladkov, S.B. Bogdanova / Journal of Magnetism and Magnetic Materials ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: S.O. Gladkov, S.B. Bogdanova, Journal of Magnetism and Magnetic Materials (2014), http://dx.doi.org/10.1016/
j.jmmm.2014.05.028i

http://dx.doi.org/10.1016/j.jmmm.2014.05.028
http://dx.doi.org/10.1016/j.jmmm.2014.05.028
http://dx.doi.org/10.1016/j.jmmm.2014.05.028
http://dx.doi.org/10.1016/j.jmmm.2014.05.028


Download English Version:

https://daneshyari.com/en/article/8157068

Download Persian Version:

https://daneshyari.com/article/8157068

Daneshyari.com

https://daneshyari.com/en/article/8157068
https://daneshyari.com/article/8157068
https://daneshyari.com

