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a b s t r a c t

The phase transitions on the material constants in a semi-infinite ferromagnet with mechanic boundary
conditions and competing “inclined” ease-axis anisotropy and easy-plane anisotropy have been investigated.
The phase states and the spectra of coupled magnetoelastic waves have been researched. The analysis of the
spectra of elementary excitations allowed the construction of the phase diagram of the system.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The terms proportional to SinβijS
j
n appear in the spin Hamilto-

nian at a microscopic description of the magnetic dielectrics. These
terms correspond to single-ion anisotropy energy appearing due
to the spin–orbit interaction (Sin is the i-th component of the spin
operator in the n-th site; βij is the tensor of single-ion anisotropy).
The simplest system possessing the single-ion anisotropy is the
spin-1 magnet in which the singe-ion anisotropy tensor is usually
diagonal and βzzaβxx ¼ βyy. Such kinds of single-ion anisotropy
tensor components lead to the realization of easy-axis single-ion
anisotropy or easy-plane single-ion anisotropy. In principle, the
low symmetry of the ion position could lead to the appearance of
non-diagonal tensor β̂, but for unbordered media, isotropic with
respect to its elastic properties, this tensor can be diagonalized.
But for the real systems with borders, with accounting for long-
ranged deformations caused by the surface, the principal axis of
the tensor β̂ can be inclined with respect to the surface. This is the
case of the so-called “inclined anisotropy”, which is unavoidable
for many real magnets, e.g., the system of the type of “magnetic
film on non-magnetic substrate”. Therefore, accounting for the
non-diagonal components of a single-ion anisotropy tensor
ðβzzaβxx ¼ βyy; βzx ¼ βxzÞ describes a more realistic model for
magnetic films and platelets. Such a model describes both the
easy-plane anisotropy and the easy-axis anisotropy lying in the
XOZ plane and makes some angle φ with the OZ-axis. Sometimes
this anisotropy is called “inclined” anisotropy [1]. The interest
in such systems is explained by the fact that they describe quite
well the anisotropy energy of disordered ferrite-garnet films.

For example, it was shown that “inclined” anisotropy is realized
in (111) disordered films within the frameworks of a two-
parametric model [2,3]. Also, both easy-axis anisotropy and the
angle of disordering lie in the ð110Þ plane [2]. The analysis of the
demagnetization processes of (112) films (the case of (111)
disordered film) [4] shows that if the external field is along the
ð110Þ plane, then the magnetization vector lies in the same plane.
Thus, if we introduce the coordinates X and Z in ð110Þ plane, then
we can show that the anisotropy energy is described by two
constants: βzz and βzx [4,5].

Magnetically ordered systems with inclined orientation of
easy-axis single-ion anisotropy have promising characteristics for
application in magneto-optic devices, for defectoscopy, for the
visualization of inhomogeneous magnetic fields, for the research
of nanostructure magnetic materials, etc. [6–8]. For example, the
investigations of the magnetic properties of nanogranular films
with easy-axis anisotropy have immense scientific and practical
importance because they are promising materials for the creation
of high density information storage devices [9–12].

Singe-ion anisotropy is not the only interaction determined by
the spin–orbit interaction. For example, magnetoelastic interaction
originates from the spin–orbit interaction too. Spin–lattice inter-
action determines the coupling between the mechanic (elastic,
acoustic, and strictional) and magnetic characteristics of the
system [13], and also influences the critical behavior during the
magnetic phase transitions [14–18]. The account for the magne-
toelastic interaction leads to the hybridization of the elastic and
the magnetoelastic excitations, and also to the appearance of
coupled magnetoelastic waves. This hybrid excitation determines
the system's dynamics in the vicinity of the orientation phase
transitions, i.e., the transversely polarized quasi-phonon branch
becomes the soft mode in the vicinity of the orientation phase
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transition, and the magnetoelastic gap appears in the quasimag-
non spectrum. Besides, the account of the magnetoelastic interac-
tion is important for the analysis of the experimental results
because it is necessary to take into account imposed mechanic
boundary conditions. These mechanic conditions define the struc-
ture of the spontaneous deformations of the magnetically ordered
crystal. Both the value and the structure of the spontaneous
deformations influence both the thermodynamic and the dynamic
characteristics of the system, and, consequently, they affect the
experimental results. In addition, it is necessary to take into
account the substrate's influence on the sample. Many authors
pay attention to the importance of the account of the mechanic
boundary conditions, but nowadays this question is still studied
insufficiently [18].

The systems, described above, are studied well for the case of
magnets with the Heisenberg exchange and weak single-ion
anisotropy interaction (see [19–21] and references in the review
article [21]). For such magnets, the phenomenological approach
based on the Landau–Lifshitz equation is adequate. However, there
are a large number of magnets with strong single-ion anisotropy.
For these magnets (non-Heisenberg magnets), some special
effects, which cannot be explained in the framework of this
phenomenological model, are present. In their static properties,
these systems can demonstrate the effects of quantum spin
reduction in the ground state. The competition between the
exchange interaction and easy-plane single-ion anisotropy leads
to quantum reduction of the spin, and at β4 J to the realization of
the spin nematic state with zero magnetic moment, characterized
by the tensor order parameter. In their dynamics, the additional
spin wave modes corresponding to the longitudinal spin oscilla-
tions are present. The details of such quantum effects can be found
in a review article [22] as well as recent articles [23–27] and
references therein.

In the present work, the influence of the magnetoelastic
interaction (mechanic boundary conditions) on dynamic and static
properties of the system will be investigated. The account for
mechanic boundary conditions leads to the appearance of non-
diagonal components of the deformation tensor that is absent for
the “free” sample. In this case, the procedure of diagonalization of
the anisotropy tensor is not sufficient, and one needs to realize full
diagonalization of the single-site Hamiltonian, with the inclusion
of the energy of magnetoelastic interaction. This naturally leads to
a model with inclined anisotropy, i.e., the anisotropy axis of the
system is not parallel to the surface. It turns out that the account
for the influence of the boundary (mechanic boundary conditions)
leads to a shift of phase stability lines or phase transition points, as
well as to a change of the area of phase existing and co-existing.
The magnetoelastic interaction can significantly influence both the
static and the dynamic properties of the system. And, if we take
into account the boundary conditions, then such a contribution
becomes even more significant. For example, the account of the
magnetoelastic interaction can change the lines of the phase
stability or the points of the phase transitions, can change the
region of the phases' co-existence, and can be exhibited in some
other ways. Also, it is important that the anisotropy can amplify
magnetoelastic effects because of their common nature (spin–
orbit interaction).

2. Model

Let us investigate the semi-infinity ferromagnet, fixed at the ZOX
plane (Fig. 1). The spin of the magnetic ion equals unity (S¼1) because
this is the minimal value of the spin at which single-ion anisotropy
appears. Besides, the ferromagnet possesses both easy-plane single-
ion anisotropy (XOY is the basal plane) and easy-axis single-ion

anisotropy lying in the ZOX plane and makes some angle with the
axis of anisotropy and the OZ-axis (“inclined” anisotropy). Because
strict boundary conditions are imposed on the system, it is necessary
to take into account the magnetoelastic interaction. There are no
elastic deformations along the OY-axis and the OZ-axis ðuz ¼ uy ¼ 0Þ
because the sample is fixed at the ZOY-plane. Such boundary condi-
tions correspond to a slab, fixed at the ZOY-plane [28]. It means that
the slab size along the OX-axis is less than the sizes along the OY-axis
and the OZ-axis. However, we can use these boundary conditions for
the system with a large length in the direction perpendicular to the
fixed plane (along the OX-axis) [29] because the slab size along the
OY-axis and the OZ-axis is not limited. Consequently, the system under
investigation can be considered as the semi-infinity sample,
0oXo1; �1oYo1; �1oZo1 (Fig. 1). We chose the
boundary condition to have maximum influence of both easy-plane
anisotropy and “inclined” anisotropy. Thus, the Hamiltonian of the
system can be represented in the following view:

H¼ �1
2
∑
n;n'

Jnn0SnSn'þ
β
2
∑
n
ðSznÞ2�

βzx

2
∑
n
Ozx
2n

þν∑
n
fuxxðSxnÞ2þuxyO

xy
2nþuzxO

zx
2ng

þ
Z

d r! ðλþηÞ
2

u2
xxþηðu2

xyþu2
zxÞ

� �
; ð1Þ

where Jnn0 40 is the exchange integral; Oij
2n ¼ SinS

j
nþSjnS

i
n are the

Stevens operators [30]; β40 is the constant of easy-plane single-ion
anisotropy (XOY is the basal plane); βzx40 is the constant of easy-axis
single-ion “inclined” anisotropy acting in the ZOX-plane; ν is the
constant of magnetoelastic coupling; λ and η are the elastic modules;
and uij is the tensor of elastic deformations. We also consider the low
temperature case (T{TC , TC is the Curie temperature).

The competing of the easy-plane and the “inclined” anisotro-
pies leads to the fact that the magnetic moment lies in the ZOX-
plane and makes some angle θ with the OZ-axis.

We will turn the coordinate system of the magnetic ion on the
angle θ around the OY-axis to direct the magnetic moment along
the OZ-axis, UðθÞ ¼∏nexp½iθSyn�. Then, we will select the mean
field and obtain the single-site Hamiltonian:

H0ðθÞ ¼ �H∑
n
SznþB0

2ðθÞ∑
n
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Fig. 1. The geometry of the model.
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