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a b s t r a c t

The vortex core shape in the three dimensional Heisenberg magnet is essentially influenced by a surface
anisotropy. We predict that depending of the surface anisotropy type there appears barrel- or pillow-
shaped deformation of the vortex core along the magnet thickness. Our theoretical study is well
confirmed by spin–lattice simulations.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Among different nontrivial magnetization distributions in the
nanoscale, magnetic vortices attract a special interest because the
vortex configuration can form a ground state in nano- and micron-
sized ferromagnets. It takes place when the sample size exceeds
the single-domain size due to the competition between an
exchange field and a stray one in magnets with small magneto-
crystalline anisotropy [1,2]. Nontrivial topological properties of
vortices [3] attract interest to their study with perspective appli-
cation to the high-density magnetic storage devices, nonvolatile
magnetic vortex random-access memories [2,4].

In common with stray field effects which favour the vortex
configuration, the vortex can form the lowest energy state in magnets
with a surface anisotropy [5,6]. Such anisotropy, which always appears
in real samples, is originated from the symmetry breaking for the
boundary sites of the lattice and can result in the specific uniaxial
single-ion anisotropy of different signs [5,7]. In the disk-shaped
magnets the edge surface anisotropy can pin the magnetization along
the border in the circular, i.e. in the vortex, configuration [5].

Similarity between the effects of the stray field and the surface
anisotropy is not casual. Various regimes are known, when the nonlocal
dipolar interaction can be approximately reduced to the local effective
anisotropy [8–17]. The analysis can be done in some limiting relations
between the nanomagnet size 2R, its thickness L, and exchange length

ℓex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=4πM2

S

q
with A being the exchange constant andMS being the

saturation magnetization. Here we recall the limiting case L5R and

ℓex5R, where the analytical description [18] shows that the dipolar
interaction can be reduced approximately to an on-site inhomogeneous
anisotropy energy. In case of disk-shaped particles there appear two
effective inhomogeneous anisotropy terms: one is effective anisotropy
of face surface charges (easy-plane anisotropy for thin samples and
easy-axis anisotropy for thick ones) and another one is effective
anisotropy of edge surface charges, which is responsible for the
tangential magnetization distribution along the disk edge resulting in
clockwise or counterclockwise vortex chirality. Since the first term can
change its sign near the disk edge [18] the so-called tailoring vortices
[19,20] can also be quantitatively explained by the effective anisotropy
model. Nevertheless it should be noted that such a type of vortices
cannot be obtained within the simple model we use in this paper.

In this work we study analytically and numerically the influ-
ence of the single-ion uniaxial surface anisotropy of different
types, easy-surface (ES) and easy-normal (EN), on the three-
dimensional (3D) vortex shape for the Heisenberg magnet. We
show that the presence of the surface anisotropy breaks the
symmetry of magnetization structure in the axial ẑ�direction,
which naturally leads to ẑ�dependence of the vortex core width:
there appears the barrel- and the pillow-deformation of the core
for the ES and EN anisotropies, respectively.

The paper is organized as follows: In Section 2 we introduce a
mathematical model of classical Heisenberg ferromagnet with account
of the surface anisotropy. We use the variational approach to describe
the structure of magnetic vortex in Section 3. Our analytical results are
verified in Section 4 by spin–lattice simulations. We discuss in Section
5 how our predictions about the influence of the surface anisotropy on
the vortex structure can be applied to magnetic particles, where the
stray field effects can be essential. The mathematical details for
deriving an energy functional is placed in Appendix A.
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2. The model

The model we consider is a ferromagnetic system, described by
the classical anisotropic Heisenberg Hamiltonian

H¼ � JS2 ∑
ðn;δÞ

mn �mnþδþHan; ð1aÞ

where J40 is the exchange integral, S is the length of classical
spin, mn is the normalized magnetic moment on a 3D site position
n, the 3D index δ runs over the nearest neighbours, and Han is the
anisotropy part of the Hamiltonian. We take into account the bulk
on-site anisotropy with the constant K40 (easy-plane anisotropy)
and the surface one with the surface anisotropy constant Ks [7,21]:

Han ¼ KS2

2
∑
n
ðmn � ẑÞ2�KsS2

2
∑
ðl;δÞ

ðml � ulδÞ2: ð1bÞ

Here the unit vector ẑ is the cylinder axis and the last term
describes the Néel surface anisotropy with the unit vector ulδ
connecting the magnetic moment ml from the surface site l to its
nearest neighbour δ.

The continuum description of the system is based on smooth-
ing of the lattice model using the normalized magnetization

mðr; tÞ ¼ a3∑
n
mnδðr�rnÞ

¼ ð sin θ cos ϕ; sin θ sinϕ; cos θÞ; ð2Þ
where θ¼ θðr; tÞ, ϕ¼ϕðr; tÞ, the parameter a being the lattice
constant, and δðrÞ being the Dirac δ-function.

The total energy, the continuum version of the Hamiltonian (1),
normalized by KS2=a3 has the following form:

E � E

KS2=a3
¼ EvþEs;

Ev ¼ 1
2

Z
dV ½�ℓ2m � ∇2mþðm � ẑÞ2�;

Es ¼
ϰa
2

Z
dS ðm � nsÞ2 ð3Þ

with ℓ¼ a
ffiffiffiffiffiffiffiffi
J=K

p
being the magnetic length which is a natural scale

in the model where only exchange and anisotropy energies are
taken into account.1 The last term Es is the transverse surface
anisotropy, the continuum analogue of Néel surface anisotropy
with ns being the normal to the surface and the parameter
ϰ ¼ Ks=K being the surface anisotropy rate. In the further study
we consider the cases of both ES anisotropy when ϰ40 and the
EN one when ϰo0.

The equilibrium magnetization structure can be found by
varying the energy functional (3), which results in the following
boundary-value problem [1,22]:

m� ½ℓ2∇2m�ðm � ẑÞẑ � ¼ 0; ð4aÞ

ℓ2∂m
∂ns

����
S
¼ ϰaðm � nsÞ½ðm � nsÞm�ns�jS: ð4bÞ

The absence of nonlocal dipolar interaction allows one to avoid
integrodifferential equations here [23,24]. One can see that the
presence of the surface anisotropy changes the symmetry of
boundary conditions, leading to the Robin boundary conditions
instead of the Neumann ones [25]. As a result the symmetry
breaking the magnetization structure becomes ẑ�dependent. In
particular, we will see that the vortex core width takes different
values in a volume and on the surface.

3. Vortex core structure: analytics

Let us consider the disk-shape sample with the radius R and the
thickness L. The volume contribution to the energy functional (3)
reads

Ev ¼
1
2

Z
dV ℓ2½ð∇θÞ2þ sin 2 θð∇ϕÞ2�þ cos 2 θ

n o
: ð5aÞ

The surface energy term Es ¼ Efaceðþ Þ
s þEfaceð� Þ

s þEedge
s ,

Efaceð7 Þ
s ¼ ϰa

2

Z
dSfaceð7 Þ cos 2 θjz ¼ 7 L=2;

Eedge
s ¼ ϰa

2

Z
dSedge sin 2 θ cos 2ðϕ�χÞjρ ¼ R; ð5bÞ

where ðρ; χ; zÞ are the cylinder coordinates.
In terms of the angular variables the boundary-value problem

(4) for the disk-shaped sample has the following form:

∇2θ�1
2
sin 2θ ð∇ϕÞ2� 1

ℓ2

� �
¼ 0; ð6aÞ

∇ � ð sin 2 θ∇ϕÞ ¼ 0; ð6bÞ

7ℓ2∂θ
∂z

�ϰa
2

sin 2θ
���
z ¼ 7 L=2

¼ 0;
∂ϕ
∂z

����
z ¼ 7 L=2

¼ 0; ð6cÞ

ℓ2∂θ
∂ρ

þϰa
2

sin 2θ cos 2ðϕ�χÞ
���
ρ ¼ R

¼ 0; ð6dÞ

ℓ2∂ϕ
∂ρ

�ϰa
2

sin 2ðϕ�χÞ
���
ρ ¼ R

¼ 0: ð6eÞ

The form of boundary conditions determines possible mini-
mizers. One can see that the boundary-value problem (6) has the
vortex-like stationary solution with

ϕ¼ χþφ0: ð7aÞ
To satisfy the boundary condition (6e), the value of the constant
φ0 ¼ 7π=2 for ϰ40 (ES magnets) and φ0 ¼ 0;π for ϰo0 (EN
magnets).

The simplified version of the boundary-value problem (6) with
θ¼ π=2 was considered in Refs. [5,13,17]: Planar vortices with
cos θ¼ 0 and ϕ¼ χþφ0 were shown to be metastable states in
the disk-shaped system.

Below we discuss the 3D boundary-value problem (6). In this
case the nonplanar vortex with z-dependence of the polar angle
appears as follows:

θ¼ θðρ; zÞ: ð7bÞ
The typical scale of the θ-distribution is determined by the
magnetic length ℓ. Supposing that ℓ5R, we can replace the
boundary condition (6d) by

∂θ
∂ρ

����
ρ ¼ R-1

¼ 0; cos θjρ ¼ R-1 ¼ 0: ð8Þ

The problem (6) is the nonlinear boundary-value problem for
the partial differential equation for the function (7b). To simplify
the analysis we use the variational approach with Ansatz-function:

cos θðρ; zÞ ¼ f
ρ

wðzÞℓ

� �
; f ðxÞ ¼ exp �x2

2

� �
: ð9Þ

This function is the generalization of the well-known Feldt-keller
Ansatz [1,26], originally used to describe the structure of the
vortex in thin films. However in contrast to [1] our reduced vortex
core function w(z) is a variational function.

Using Ansatz (9) one can write down the energy in the form
E ¼ E0þπℓ3

ffiffiffiffiffiffiffiffiffi
ζð3Þ

p
~E ½w�, where the first term E0 is independent of

the z coordinate, the second term ~E ½w� contains terms both due

1 Typical characteristic lengths are of 10 nm like exchange lengths ℓex ¼ 5:1 nm
for Permalloy, 7.6 nm for Nickel and magnetic length 4.7 for Cobalt [2]. Magneto-
statics can be reduced to the effective surface anisotropy in thin films and in this
case the vortex core size is a corresponding effective magnetic length.
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