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a b s t r a c t

A numerical inversion method known from the analysis of light scattering by colloidal dispersions is now
applied to magnetization curves of ferrofluids. The distribution of magnetic particle sizes or dipole
moments is determined without assuming that the distribution is unimodal or of a particular shape. The
inversion method enforces positive number densities via a non-negative least squares procedure. It is
tested successfully on experimental and simulated data for ferrofluid samples with known multimodal
size distributions. The created computer program MINORIM is made available on the web.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic nanoparticles have many applications that are the
subject of current research. For example, in cancer therapy local
hyperthermia can be generated by heating magnetic nanoparticles
linked to cancer cells by applying an alternating magnetic field
[1,2]. Another promising biomedical technique is magnetic particle
imaging (MPI) [3], which also exploits the response of magnetic
nanoparticles to alternating fields. Both of these biomedical
applications ideally require magnetic particles that all have exactly
the same (size dependent) magnetic resonance frequency [4,5], to
obtain a maximum response at that frequency. For these and other
applications, it is important to know how the magnetic properties
are distributed across the entire population of nanoparticles.
A widely adopted approach to determine the distribution of the
dipole moments is by analysis of the magnetization of the sample
as a function of external magnetic field strength.

The magnetization curves of ferrofluids are often fitted on the
basis of an assumed shape of the distribution of the magnetic
dipole moments, related more or less directly to the size distribu-
tion from transmission electron microscopy (TEM). Chantrell et al.
[6] assumed a log-normal distribution, but other distributions

such as a gamma function have been adopted as well [7,8]. The
parameters of the log-normal distribution can either be derived
from the low- and high-field limits of the magnetization curve
[6,7] or from fitting the complete curve [9,10]. More specific
models have also been proposed, like a core–shell model [11] to
explain the discrepancy between magnetic diameter and physical
diameter from TEM. For multimodal systems, the distribution can
in principle be modeled with multiple peaks; one then faces the
difficulty that an increasing number of fit parameters can make
the results less reliable and physically less meaningful.

For dynamic light scattering as a colloidal characterization tech-
nique (DLS), there is a long tradition of obtaining particle size
distributions without assuming the distribution shape but by apply-
ing discrete inversion methods [12]. Similar methods have also been
used to derive magnetic particle size or dipole moment distributions
from magnetization measurements [13–17]. An analysis technique
that does not assume any shape of the particle distribution generally
yields a better fit of the experimental magnetization curve.

Nowadays, many different inversion methods are available, such
as genetic algorithms [13], maximum entropy [18], singular value
decomposition (SVD) [19], simulated annealing [13], moment expan-
sion [20], and non-negative least squares methods. The latter can be
subdivided into a class of regularized methods, such as the CONTIN
method [12,21,22], prominent in dynamic light scattering [12], and
non-regularized methods [23]. The reconstruction of the magnetic
size distribution by these techniques is not trivial and not necessarily
robust. For example, the SVD method is highly sensitive to noise [6].
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For a good reconstruction based on the moments of the distribution,
typically 10 moments are necessary to arrive at a reasonable
approximation of the dipole moment distribution. Although these
moments could be obtained via a fit of the magnetization curve with
a Taylor expansion of the Langevin function, the number of terms
required to describe a reasonable part of the data is large and
therefore the reliability of the thus obtained moments is low. And
although genetic algorithms can provide reliable distributions, these
methods typically have a high computational cost.

In this paper, we apply a model-independent, non-regularized
inversion method for the analysis of magnetization curves. It is
adapted from a method designed by Strawbridge and Hallett [23] for
the analysis of static light scattering measurements (SLS). This
method does not assume unimodality nor other prior knowledge
of the shape of the distribution of particle sizes or magnetic dipole
moments. Using non-negative least squares procedures (NNLS), our
method enforces positive number densities, unlike other methods
that can give negative, unphysical results [15]. Our procedure is
applicable to measurement data from alternating gradient magneto-
metry (AGM) as well as vibrating sample magnetometry (VSM).

In principle, our program is based on discrete sampling
methods, originally developed by Pike et al. [24] as an exponential
sampling technique, and later improved by Morrison et al. [25].
With the NNLS procedure based on Lawson and Hanson [26], a
short execution time is obtained on the order of seconds or less
using a state-of-the-art personal computer.

In the next section, the mathematical foundation of our model-
independent method is presented. In the Results and Discussion
section, the method is first demonstrated on real measurement
data of ferrofluid samples with a known multimodal size distribu-
tion. This is followed by the analysis of simulated magnetization
curves calculated for test distributions of the dipole moment.
Gaussian noise is added to the simulated measurements to test the
robustness of the inversion method.

2. Numerical methods

For a dilute dispersion of monodisperse non-interacting sphe-
rical magnetic nanoparticle dipoles, the total magnetic dipole
moment M of the sample as a function of the applied magnetic
field H is described by the Langevin function L, with

MðHÞ ¼MsatLðH;μÞ ¼Msat cothðαÞ�1
α

� �
α ¼ μμ0H

kBT

� �
ð1Þ

whereMsat is the magnetic moment of the sample under magnetic
saturation conditions, μ is the magnetic dipole moment of a
magnetic nanoparticle, μ0 is the permeability of vacuum, kB is
the Boltzmann constant, and T is the absolute temperature. In case
of a monodisperse ferrofluid with a number n of particles, Msat

corresponds to the magnetic moment Msat ¼ nμwhen all magnetic
dipoles are aligned in the limit of infinite applied field H. For a
polydisperse or a multimodal colloidal dispersion, the sample
magnetic moment is the sum of all contributing dipole moments,
which for a continuous joint probability distribution function can
be written as a distribution integral:

MðHÞ ¼
Z 1

0
μLðH;μÞPðμÞ dμ ð2Þ

Here, the factor PðμÞ dμ gives the number of particles with dipole
moments between μ and μþdμ and, similarly, μPðμÞ dμ gives the
contribution to the magnetic moment of the sample under
saturation conditions.

In order to obtain the magnetic dipole moment distribution
PðμÞ, we must solve Eq. (2) given the experimental magnetization
curve MexpH and using the Langevin function LðH;μÞ from Eq. (1).

This is in general an ill-conditioned problem; small experimental
uncertainties such as noise can give rise to large, unphysical peaks
in the distribution curve [12].

To address this problem, we rewrite Eq. (2) in a discrete form.
The magnetic dipole moment domain is subdivided into a histo-
gram of N intervals of which each bin spacing Δi has a center
dipole moment μi and a bin content equal to the number
amplitude ni (see Fig. 1). The experimental magnetization curve
consists of J points Mj each measured at a field strength Hj. The
discrete form of Eq. (2) becomes

MexpðHjÞ ¼ ∑
N

i ¼ 1
μiLðHj;μiÞni ð3Þ

The basis vector Hj contains the experimental values of the
magnetic field strength at which the measurements are made. The
measurement output can be written as a column vector Mexp

having the same length J. We describe the magnetic dipole
moment distribution by a column vector npsd of length N, with
elements ni in a basis μi. Eq. (3) can now be summarized using a

J�N data transfer matrix T
2

that contains matrix elements
Tji equal to μiLðHj;μiÞ calculated using the Langevin function
(see Eq. (1)):

Mexp ¼ T
2

� npsd ð4Þ

In the absence of experimental uncertainties, the number
distribution npsd can be solved from Eq. (4). Due to noise and
other measurement uncertainties, statistical methods are needed
to obtain the best magnetic dipole moment distribution ni by
minimizing the mean squares deviation ξ2:

ξ2 ¼ ‖½Mexp� T
2

� npsd�‖2 ð5Þ

The result of this inversion method is obtained without assuming
prior knowledge of the form of the distribution (e.g., log-normal or
Gaussian).

Regularization methods are often used in order to make the
problem less ill-conditioned. In dynamic light scattering, the
CONTIN method [12,21,22], based on the algorithm of Tikhonov
[27,28], is a well-known example. A mathematical regularizing
term is added to Eq. (5) to force a smooth outcome of the
probability distribution ni. The regularizer is the square norm of
the first or a higher order derivative of the distribution function ni
itself, multiplied by a regularization strength parameter λ which
determines the influence of this regularization term. The result is a

Fig. 1. Histogram showing an example of a dipole moment distribution with the
dipole moments μ (or alternatively the particle radius R) binned in N¼15
geometrically spaced bins, subdivided into S¼5 subdomains. The meaning of the
y-axis values depends on the definition of the probability factor PðμÞ in the
magnetization function (Eq. (2)).
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