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Matrix and matrix differential equations play an important role in system theory, control
theory, stability theory of differential equations, communication systems and many other fields. In
this paper, we present the solutions of non-homogeneous matrix differential equations, convolution
matrix differential equations and matrix equations which include the renewal matrix equation by
using convolution and Kronecker products of matrices. Furthermore, the existence and uniqueness

of the solution of some important and interesting special cases of these equations are also considered
with some illustrated examples in order to show our new approaches.
© 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.

1. Introduction and preliminary results

In addition to the matrix usual multiplication; there has been
renewed interest in two kinds of matrix multiplication. These
multiplications are the convolution and Kronecker products
which are playing very important roles in many applications
and the technique has successfully applied in various fields of
pure and applied mathematics, for example, in the solution
of matrix and matrix differential equations [1-15]. The
notations: M,,,, A, A7, A", rank(4), ¢”, ||A|l, a(4) are
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stand to the set of all mxn matrices (when m = n, we
write M, instead of M,,,), transpose, inverse, Moore—Penrose
inverse, rank, exponential, norm, and the set of all eigenvalues
of a matrix A, respectively. Now, we recall the main definitions
and some important properties of the Kronecker and
convolution products of matrices that will be very useful in
our investigation in the solution of matrix equations and
matrix differential equations.

The Kronecker and convolution products used in many
fields are almost as important as the usual product. One of
the principle reasons is that these products affirming
their capability of solving a wide range of problems and
playing important tools in many fields such as control theory,
system theory, statistics, physics, communication systems,
optimization, economics and engineering. These include signal
processing, image processing, semi definite programming,
matrix equations, matrix differential equations and many
other applications [I-21]. The following four matrix
operations are studied by many researchers [1-4,7-14,20,21]
and defined as follow:
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(1) Kronecker product:
A®B= (ai/'B)ij € Mmp.nq7 (1-1)

where 4 = (ay) € M,,,, and B =
(i1) Kronecker sum:

A®B=(4A4®1,) +

where 4 = (a;) € M,, and B =
(iii) Vector operator:

(bA l) eEM P-q*

(Im & B) S Mmm (1_2)
(bk/) € Mn-

T
(6111@21 s A Apdy LAy L. Apdoy . amn)
€ My, (1-3)

where A = (ay) € M, .
(iv) Convolution product:

VecA =

A B(1) = (hi (1)) with (1)
= Z/ fl/( gkr )dx = Zfl:k * gkr(l)7
k=1
(1-4)
Where A(t) = (ﬁ/(t)) € Mm,n and B(t) = (gjr(t)) € Mn,p are

integrable matrices for all ¢ > 0, such that f;(¢) and g;(r) are
well-defined functions for all positive integer values i, j, r.
The following three definitions are also very useful in our
investigation in the solutions of renewal matrix equations and
matrix differential convolution equations. If A(¥) = (f;{?)) € M,
is an integrable matrix, then [5-6,20]
(1) The m-power matrix convolution product of A(t) is
defined by

A1) = Ax Ax -5 A1) = (7 (1)

Z A fu(0), (125

where m is positive integer number, and 41%(r) = A(2).
(ii) The determinant of A(z) is defined by

n

detA(t) = > (-

=1

€ M, with f(’"}

1)U,y Dy, (1-6)

where Dj; is the determinant of the (n — 1) x(n — 1)

matrix function obtained from A(¢7) by deleting row i

and column j of A(#). We call D;; the minor of A() cor-
responding to the entry f;(r) of A(f).
(iii) If det (A(?)) # 0, the inversion of A() is defined by
AT(0) = (hy(1)) with hy (1)
— [det(A(e)] " * adj(1). (1-7)

For any compatibly matrices 4, B, C and D, we shall make fre-
quent use of the following properties of the Kronecker prod-

ucts [1-4,7-14].
(i) (A@B)" =42 B" (1-8)
(i) (A®B)" = A" @ B (1-9)
(ii) rank(A ® B) = rank(A)rank(B) (1-10)
(iii) e“®8) = 1 ® f (1-11)
(iv) (4 ® B)(C® D) = AC® BD (1-12)
v L, =1&I, =1,, where I, is the identity

matrix of order m x m. (1-13)

i) If o(d)={4:i=1,2,...,m} and o(B) = {py =1,
2,...,n} are the set of eigenvalues of 4 € M,, and
B € M, respectively. Then

() o(A®B)={Aw;:i=1,2,....mj=12,...,n}. (1-14)
(i) 6(A@B) = {A+p:i=12....mj=12.. n}(I-15)
(Vi) A ® L) = fld) @ I, fI, ® A) = I, @ f(A), (1-16)

where f is analytic function on the region containing the
eigenvalues of 4 € M,, such that f(A4) exist.
Some special cases include (1-16):

() e’ =e'@Tand ™' =T® e’ (1-17)
(ii) sinh(4 ® I) =sinh(4) ® [ and sinh(/® A)

= I ®sinh(4) (1-18)
(iii) cosh(A4 ® I) = cosh(A4) ® I and cosh(I® A)

= I ® cosh(4). (1-19)

For any matrix 4 € M,,, the spectral representation of e and
e assures that:

n n
et = E xiyleti, e E xylett
=0 =0

where {4,,---,4,} are the eigenvalues of 4, {xi, ..., x,,} and
{71, ..., ya) are the set of all eigenvectors of A4 and A7,
respectively, corresponding to the eigenvalues {4;,- -, 4,}.

The nice relationship between the Kronecker product and
vector-operator is given by [1-4,7-14]

Vec(AXB) = (B ® A)VecX,

where A€ M,,,, BE M, ,and X € M, ,.
For any compatibly integrable matrices A(f) = (fj{¢)) and

B(t) = (g;(1), we shall make frequent use of the following

properties of the convolution product [18,20,21]:

(1-20)

(1-21)

(i) £(4 + B) = £((A4))(s)£((B))(s) (1-22)
(ii) (A * B(2))(i,r) < (A()B(2)) (i, r) (¢ fixed) (1-23)
(iii) |4+ B[ < [[AO]- B (1-24)
(i) |4 (2)|| < | A(0)||™ (m is positive integer) (1-25

Finally, the Moore-Penrose inverse is widely used in
perturbation theory, singular systems, neural network
problems, least-squares problems, optimization problems and
many other subjects. The Moore—Penrose inverse of an
arbitrary matrix 4 € M,,, is defined to be the unique solution

of the following four matrix equations [4,11,14]:
AXA = A, XAX = X, (AX)" = 4X, (XA)" = X4,  (1-26)

and is often denoted by X = 4" ¢ M, ,,. Note that if
A€ M,,, then we have the following special cases:

(i) If rank(A) = m = n,then 4™ = 4™ (1-27)
(ii) If rank(A) = n, A" = (A74) 'A" and ATA =1,  (1-28)
(iii) If rank(A) = m, A* = A7(A447) " and 44" =1,. (1-29)

In the present paper, based on the vector-operator,
Kronecker products and convolution products of matrices,
we present the general solutions of some matrix and matrix
differential equations. These equations involve the renewal
matrix equation, general matrix equation and non-homoge-
neous matrix differential equations, then we show that the
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