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a b s t r a c t

In this paper the effects of induced magnetic field on the peristaltic transport of a Williamson fluid model
in an asymmetric channel has been investigated. The problem is simplified by using long wave length
and low Reynolds number approximations. The perturbation and numerical solutions have been
presented. The expressions for pressure rise, pressure gradient, stream function, magnetic force function,
current density distribution have been computed. The results of pertinent parameters have been
discussed graphically. The trapping phenomena for different wave forms have been also discussed.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the pioneering work done by Latham [1], considerable
attention has been given to the study of peristaltic flows of both
Newtonian and non-Newtonian fluids with different flow geome-
tries because of their importance in many engineering and
Biomedical applications. In biological systems it is involved in
urine transport from kidney to bladder, swallowing food through
esophagus, chyme motion in the gastrointestinal tract, vasomotion
of small blood vessels and movement of spermatozoa in the
human reproductive tract. There are many engineering processes
as well in which peristaltic pumps are used to handle a wide range
of fluids particularly in chemical and pharmaceutical industries. It
is used in sanitary fluid transport, blood pumps in heart lungs
machine and transport of corrosive fluids where the contact of the
fluid with the machinery parts are prohibited. Peristaltic flows of
Newtonian and non-Newtonian fluids with different physical
geometries and wave shapes have been studied by number of
authors. To mention a few, Nadeem and Akbar [2] have examined
the effects of temperature dependent viscosity on peristaltic flow
of a Jeffrey six constant fluid in a non-uniform tube. Lozano and
Sen [3] have highlighted the stream lines patterns and their local
and global bifurcation in a two dimensional planner and axisym-
metric peristaltic flow of a Newtonian fluid. They [3] discussed

three bifurcation regions and verify their results with the experi-
mental data. The peristaltic flow of a couple stress fluid in an
annulus have been studied by Mekheimer and Abd-elmaboud [4].
Nadeem and Akram [5–8] have discussed the peristaltic flows of
Newtonian and non-Newtonian fluid in symmetric and asym-
metric channels. In few other papers, Nadeem and Akbar [9–12]
have discussed the peristaltic flows in cylindrical geometry with
different wave forms. A new numerical solution for MHD peristal-
tic flow of a bio-fluid with variable viscosity in a circular cylind-
rical tube via Adomian decomposition method has been examined
by Ebaid [13]. Some more useful papers on this subject are cited in
the Refs. [14–25] In view of amount of work done on peristaltic
flows it becomes interesting to investigate the effects of induced
magnetic field on the peristaltic flow of Williamson fluid model in
symmetric and asymmetric channel. The modeled nonlinear
equations of Williamson model for two dimensional peristaltic
flow are simplified using the well-known long wave length and
low Reynolds number approximations. The reduced equations are
then solved analytically and numerically. A comparison of both the
solutions is also given. The expressions for pressure rise, velocity,
induced magnetic field function and stream lines are discussed
through graphs for different physical parameters Tables 1 and 2.

2. Mathematical formulation

Let us consider the peristaltic flow of an incompressible,
electrically conducting non-Newtonian fluid (Williamson fluid)
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in a two dimensional channel of width d1+d2. The flow is
generated by sinusoidal wave trains propagating with constant
speed c along the channel walls. We choose a rectangular
coordinate system for the channel with X along the center line
of the channel and Y is transverse to it. An external transverse
uniform constant magnetic field H0, induced magnetic field H
(hX(X,Y,t),H0+hY(X,Y,t),0) and the total magnetic field H+(hX(X,Y,t),
H0+hY(X,Y,t),0) are taken into account.

A schematic diagram of the geometry of the problem under
consideration is shown in Fig. (a).

The channel walls are considered to be non-conductive and the
geometry of the wall surface is defined as

Y ¼H1 ¼ d1 þ a1 Cos
2π
λ

X�ctð Þ
� �

;

Y ¼H2 ¼�d2�b1 Cos
2π
λ

X�ctð Þ þ ϕ

� �
; ð1Þ

where a1 and b1 are the amplitudes of the waves, λ is the wave
length, d1+d2 is the width of the channel, c is the velocity of
propagation, t is the time and X is the direction of wave propagation,
the phase difference ϕ varies in the range 0≤ϕ≤π, ϕ¼0 corresponds

to symmetric channel with waves out of phase and ϕ¼π, the waves
are in phase, further a1,b1,d1,d2 and ϕ satisfy the condition

a21 þ b21 þ 2a1b1 cos ϕ≤ d1 þ d2ð Þ2:
The equations governing the flow are given by

(i). Maxwell's equation

∇H ¼ 0; ∇E¼ 0; ð2Þ

∇∧H ¼ J;withJ¼ rfEþμeðV∧HÞg; ð3Þ

∇∧E¼�μe
∂H
∂t

⋅ ð4Þ

(ii). The continuity equation

∇V ¼ 0: ð5Þ

(iii). The equation of motion

ρ
∂V
∂t

þ V⋅∇ð Þ V
� �

¼ divð�pIþτÞ�∇
1
2
μe Hþ� �2� �

�μe Hþ⋅∇
� �

Hþ;

ð6Þ

in which the extra stress tensor τ for Williamson fluid in defined
by [5]

τ¼ μ0 ð1�Γ _γÞ�1� _γ ¼ μ0 ð1þ Γ _γÞ½ � _γ⋅
h

ð7Þ

With the help of Eqs. (2)–(4), we obtain the induction equation as
follows:

∂Hþ

∂t
¼∇∧ V∧Hþ� �þ 1

ξ
∇2Hþ; ð8Þ

where ξ¼ 1
sμe

is the magnetic diffusively.

Nomenclature

U,V velocity components in the X and Y directions in
fixed frame

U,v velocity components in the x and y directions in
wave frame

ρ constant velocity
p pressure
s electrical conductivity
M Hartmann number
Re Reynolds number

Φ amplitude ratio
a1;b1 amplitude of waves
λ wave length
c velocity of propagation
Q volume flow rate
δ long wave length
ψ stream function
S1 Strommer's number (magnetic force number)
Rm magnetic Reynolds numbers
Φ magnetic force function
τ extra stress tensor

Table 1
Shows the comparison of Numerical and Perturbation solution.

y Perturbation solution Numerical solution

�1.5 �1 �1
�1.2 �1.75134 �1.726386988
�0.9 �2.32132 �2.273336808
�0.6 �2.71565 �2.649944075
�0.3 �2.93986 �2.863689314
0 �2.99925 �2.920718863
0.3 �2.89899 �2.826056927
0.6 �2.6441 �2.583769801
0.9 �2.23945 �2.197095457
1.2 �1.68984 �1.668547535
1.5 �1 �1

Table 2
Shows the comparison of Numerical and perturbation solution.

Y Perturbation solution Numerical solution

�1.5 �1 �1
�1.2 �1.73181 �1.726386988
�0.9 �2.28729 �2.273336808
�0.6 �2.67189 �2.649944075
�0.3 �2.89086 �2.863689314
0 �2.94927 �2.920718863
0.3 �2.85202 �2.826056927
0.6 �2.60387 �2.583769801
0.9 �2.20946 �2.197095457
1.2 �1.67335 �1.668547535
1.5 �1 �1

Fig. (a). Geometry of the problem.
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