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Abstract The generalization of the nonlinear reaction–diffusion model in porous catalysts the so

called one dimensional steady state reactive transport model is revisited. This model, which origi-

nates also in fluid and solute transport in soft tissues and microvessels, has been recently given

analytical solution in terms of Taylor’s series for different families of reaction terms. This article

considers the mentioned model without advective transport in the case of including Michaelis–

Menten reaction term and shows that it is exactly solvable and furthermore, gives analytical exact

solution in the implicit form for further physical interpretation. It is also revealed that the problem

may admit unique or dual or even more triple solutions in some domains for the parameters of the

model.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.

1. Introduction and the problem formulation

The governing boundary value problem of the one dimen-

sional steady state reactive transport model can be written in
dimensional variables as

DU00 � VU0 � rðUÞ ¼ 0; 0 6 X 6 L;

U0ð0Þ ¼ 0; UðLÞ ¼ Us; ð1Þ

where D is the diffusivity, V is the advective velocity and rðUÞ
denotes reaction process [1–5]. Now, by introducing
nondimensional quantities UðxÞ ¼ UðXÞ

Us
, x ¼ X

L
and RðUÞ as

nondimensional reaction term and then substituting into Eq.

(1), we get

U00 � PU0 � RðUÞ ¼ 0; 0 6 x 6 1; U0ð0Þ ¼ 0;

Uð1Þ ¼ 1; ð2Þ

where P ¼ VL
D

is so-called Péclet number. Without advective
transport, we have P ¼ 0 and in this case the model has been

used to study porous catalyst pellets as the model of diffusion
and reaction [1,6]. Furthermore, if we consider RðUÞ as
Michaelis–Menten reaction term then the model is converted
to

U00ðxÞ � aUðxÞ
bþUðxÞ ¼ 0; 0 6 x 6 1; ð3Þ

with the boundary condition

U0ð0Þ ¼ 0; Uð1Þ ¼ 1; ð4Þ

where a, characteristic reaction rate, and b is half saturation
concentration.
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We mention here that a 2 R, when a < 0, it means that we
look at the reactives instead of looking at the products of the
reaction. Furthermore, half saturation concentration i.e. b is

always positive and there is no physical interest for the case
b < 0, but we consider this case too to better disclose the exis-
tence of multiple solutions from mathematical point of view.

The problem (2) without advective transport (P ¼ 0) and
with reaction termRðUÞ ¼ /2Un (/ is Thiele modulus) has been
studied by Adomian decomposition method [7] and Homotopy

analysis method [8,9]. In this paper, we analyze the problem (3)
and (4), which is arisen also as multiscale modeling of fluid and
solute transport in soft tissues and microvessels [10], for differ-
ent values of a and b, show that the differential equation is ex-

actly solvable, and gives the exact analytical solution in the
implicit form. Moreover, we prove that the boundary value
problem (3) and (4) either admits unique solution, dual solu-

tions, triple solutions or does not admit any solution in some
domains of x for different values of a and b.

2. Existence results for corresponding initial value problem

Consider corresponding initial value problem of (3) and (4),
which is read

U00ðxÞ � aUðxÞ
bþUðxÞ ¼ 0; 0 6 x 6 1; ð5Þ

Uð0Þ ¼ U0; U0ð0Þ ¼ 0: ð6Þ

It can be reformulated as a system of two first-order equa-
tions by introducing

y1ðxÞ ¼ UðxÞ; y2ðxÞ ¼ U0ðxÞ: ð7Þ

as

y01ðxÞ ¼ y2ðxÞ y1ð0Þ ¼ U0

y02ðxÞ ¼
ay1ðxÞ

bþy1ðxÞ
y2ð0Þ ¼ 0

(
ð8Þ

Definition 1. Consider a two dimensional vector-valued func-

tion F defined for ðx; yÞ in some set S (x real, y in R2). We say
that F satisfies a Lipschitz condition on S# R3 if there exists a
constant K > 0 such that

kFðx; yÞ � Fðx; zÞk 6 Kky� zk ð9Þ

for all ðx; yÞ; ðx; zÞ in S, where k � k denotes L1-norm defined by
kyk ¼ jy1j þ jy2j.

Lemma 1. Suppose F is a two dimensional vector-valued
function as

Fðx; yÞ ¼ y2;
ay1

bþ y1

� �T

; ð10Þ

defined for ðx; yÞ on a set S of the form

0 6 x � 1; kyk <1: ð11Þ

If by1ðxÞ > 0 on 0 6 x � 1, then F satisfies a Lipschitz condition

on S.

Proof. Let ðx; yÞ; ðx; zÞ be fixed points in S, and define the
vector-valued function F for real s; 0 6 s � 1, by

F ðsÞ ¼ Fðx; zþ sðy� zÞÞ ¼
z2 þ sðy2 � z2Þ

a z1þsðy1�z1Þð Þ
bþ z1þsðy1�z1Þð Þ

 !
ð12Þ

This is a well-defined function since the points ðx; zþ sðy� zÞÞ
are in S for 0 6 s � 1. Clearly 0 6 x � 1, and if

kyk <1; kzk <1;

then

kzþ sðy� zÞk 6 ð1� sÞkzk þ skyk 6 kzk þ kyk <1; ð13Þ

We now have

F 0ðsÞ ¼ y2 � z2; qðsÞð ÞT; ð14Þ

where

qðsÞ¼ aðy1� z1Þ bþ z1þ sðy1� z1Þð Þð Þ�aðy1� z1Þ z1þ sðy1� z1Þð Þ
bþ z1þ sðy1� z1Þð Þ2

ð15Þ

It is not difficult to see bþ z1 þ sðy1 � z1Þð Þ2 > b2. Also,
suppose jz1 þ sðy1 � z1Þj <M1, then

jqðsÞj 6 jajjy1 � z1j jbj þM1ð Þ þ jajjy1 � z1jM1

b2

¼Mjy1 � z1j ð16Þ

where M ¼ jaj jbjþM1ð ÞþjajM1

b2
, therefore

kF 0ðsÞk ¼ jy2 � z2j þ jqðsÞj 6 jy2 � z2j þMjy1 � z1j
6Mjy2 � z2j þMjy1 � z1j ¼Mky� zk: ð17Þ

Thus, since

Fðx; yÞ � Fðx; zÞ ¼ Fð1Þ � F ð0Þ ¼
Z 1

0

F 0ðsÞds; ð18Þ

we have

kFðx; yÞ � Fðx; zÞk 6Mky� zk; ð19Þ

which was to be proved. h

Suppose y0 ¼ U0; 0ð ÞT and consider a successive approxi-
mations U0ðxÞ;U1ðxÞ;U2ðxÞ,. . ., where

U0ðxÞ ¼ y0;

Ukþ1ðxÞ ¼ y0 þ
Z x

U0

Fðt;UkðtÞÞdt; k ¼ 0; 1; 2; . . . : ð20Þ

Now since Fðx; yÞ defined by (10) is continuous on

S : 0 6 x � 1; kyk <1; ð21Þ

for bUðxÞ > 0 then it is bounded there, that is, there is a posi-
tive constant M such that

kFðx; yÞk 6M:

On the other hands, Lemma 1 reveals that F satisfies a
Lipschitz condition on S. All these confirm that the hypotheses
of the following theorem hold.

Theorem 1. Let Fðx; yÞ be a real-valued continuous function on

S defined by (21) such that

kFðx; yÞk 6M:

Suppose there exists a constant K > 0 such that

kFðx; yÞ � Fðx; zÞk 6 Kky� zk; ð22Þ
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