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a b s t r a c t

The energy of magnetic vortex core and its equilibrium radius in thin circular cylinder were first
presented by Usov and Peschany in 1994. Yet, the magnetostatic function, entering the energy
expression, is hard to evaluate and approximate. Here, precise and explicit analytical approximations
to this function (as well as equilibrium vortex core radius and energy) are derived in terms of elementary
functions. Also, several simplifying approximations to the magnetic Hamiltonian and their impact on
theoretical stability of magnetic vortex state are discussed.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The first topological soliton was discovered as a solution of
non-linear field theory equations by Skyrme [1]. It had a form of
three-dimensional hedgehog and was named subsequently “sky-
rmion” in honor of the discoverer. After the landmark work of
Belavin and Polyakov [2], topological solitons have crossed the
boundary into condensed matter physics. The latter authors
discovered much more topological soliton solutions in the infinite
Heisenberg ferromagnet, as many as there are rational functions of
complex variable, mapping any such function into some equili-
brium magnetic structure. Zeros of numerator (possibly with
higher multiplicity) of these rational functions correspond to the
centers of magnetic vortices, while zeros of denominator to the
centers of magnetic anti-vortices. In the model of infinite 2D
ferromagnet, considered by Belavin and Polyakov, solitons are
absolutely stable. Once magnetic texture with a certain topological
charge (number of magnetic vortices) is created, all the structures
with different topological charge are separated by an infinite
energy barrier. It is worth noting that 7 years earlier essentially
the same mathematics of rational functions of complex variable
was applied to the problem of magnetic singularities (Bloch
points) in 3D ferromagnet by Döring [3], who also found that
the exchange energy of ferromagnet around a Bloch point depends
only on degrees of numerator and denominator of the correspond-
ing rational function. His energy expression is exactly the same as
that of Belavin and Polyakov [2] for 2D ferromagnet. However

(probably, because Bloch points, to which model of Ref. [3] applies,
are rather exotic objects in magnetism), the paper by Döring is
currently much less known and cited.

The model of Belavin and Polyakov became known in particle
physics as non-linear O(3) s model in 3+1 dimensions and
reformulated elegantly in terms of functions of complex variable
by Woo [4]. Gross found additional family of “meron” solutions to
it [5]. Since then, the original Belavin–Polyakov solutions became
known as just “solitons”. Merons, and all other O(3) s model
solutions besides solitons [4], have infinite energy in unbounded
2-d ferromagnet, but can be realized when the ferromagnet is
finite [6].

While these solutions were obtained long ago, the question of
their stability has a history of its own. Kosterlitz and Thouless [7]
analyzed stability of planar vortices in 2D ferromagnet and came
to conclusion that they are unstable and such order could not
exist. It is, indeed, true that the energy of Belavin–Polyakov
solitons is scale-invariant and their size is, thus, undefined. In real
ferromagnets, however, there are various other interactions (not
exotic at all), which make the vortices stable. Usov and Peschany,
were first to show that dipolar magnetostatic interaction stabilizes
magnetic vortex in ferromagnetic cylinder both with respect to
core radius change [8] and vortex center displacement [9]. Their
results were later fully confirmed experimentally, starting with the
direct observation of magnetic vortex core and measurement of its
radius [10]. These and the following experiments made single
vortex state not only interesting from fundamental point of view,
but also an essential component of emerging spintronic devices
(such as MRAM elements, based on vortex core polarity [11] or
chirality [12] switching, or spin-polarized current magnetic nano-
oscillators [13]). It is also prerequisite for study of more complex
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multi-vortex magnetic configurations in planar nano-elements of
various shapes.

Here, starting from recent (and more general) description of
magnetization distributions in finite nano-elements via functions
of complex variable [14] the impact of various approximations on
vortex stability is reviewed in unified manner and the expression
for vortex core radius in circular cylinder [8] is re-derived. It
defines the core radius implicitly via an equation and an integral of
certain special functions, which is very inconvenient to evaluate
and approximate at small cylinder thickness because in this limit it
is not analytic and its higher derivatives do not exist. It is, however,
possible to introduce small parameters and expand the special
functions and the vortex core radius into series, obtaining an
explicit analytical approximate (but very precise) expressions,
presented at the end.

2. Magnetic vortex in complex variables and its exchange
energy

In finite planar nano-elements the equilibrium magnetization
configurations can be described via rational functions of complex
variable with real coefficients [14] (as opposed to complex
coefficients in the case of infinite film [2,4]). The simplest ansatz
for magnetic vortex in circular cylinder (of thickness LZ and radius
R) can be written in the complex notation as

f ðzÞ ¼ ıðz−aÞ=RV ð1Þ
where z¼ X þ ıY with X and Y being the Cartesian coordinates in
the cylinder's plane (the magnetization distribution is assumed to
be independent on out-of-plane coordinate Z), RV is the vortex core
radius and a is the displacement of the vortex from the origin
(a¼0 corresponds to the centered vortex). Let us then define a
complex function

wðz; zÞ ¼
f ðzÞ jf ðzÞj≤1
f ðzÞ=jf ðzÞj jf ðzÞj41 ;

(
ð2Þ

where the line over variable denotes complex conjugation. The
function w is shown to depend explicitly on both z and z because it
is, in general, not holomorphic. It consists of two parts: soliton
(where it is analytic and ∂wðz; zÞ=∂z ¼ 0) and meron (where
ww ¼ 1, joined at a line possibly multiply connected if there are
several vortices or anti-vortices) jf j ¼ 1. The magnetization com-
ponents, normalized by material's saturation magnetization MS,
are then expressed via stereographic projection as

mx þ ımy ¼
2wðz; zÞ

1þwðz; zÞwðz; zÞ ð3Þ

mz ¼ 1−wðz; zÞwðz; zÞ
1þwðz; zÞwðz; zÞ : ð4Þ

Being written via the magnetization components in Eqs. (3) and
(4), the ansatz in Eq. (1) is exactly equivalent to the one by Usov
and Peschany [8] and also belongs to the class of trial functions,
considered by Kosterlitz and Thouless [7]. Following the latter
work, let us first take into account only the exchange interaction.
In complex notation the exchange energy density (omitting the
factor C/2, where C is the exchange stiffness) can be directly
expressed via the function w:

∑
i ¼ x;y;z

ð∇!miÞ2 ¼
8

ð1þwwÞ2
∂w
∂z

∂w
∂z

þ ∂w
∂z

∂w
∂z

� �
; ð5Þ

where ∂=∂z¼ ð∂=∂X−ı∂=∂YÞ=2 and ∂=∂z ¼ ð∂=∂X þ ı∂=∂YÞ=2. The
total exchange energy can be obtained by integrating the density
(5) over nano-element's volume. Recalling the Riemann–Green
theorem

1
2ı

∮∂Duðζ; ζÞ dζ¼∬D
∂uðz; zÞ

∂z
dX dY ; ð6Þ

where u is a complex function of the complex argument (not
necessary analytic1), it is possible to reduce the area integral over
cylinder's face D for the total exchange energy to a contour
integral over its boundary ∂D, provided there is a complex
function, whose derivative over z yields the exchange energy
density (5). Luckily, such function (actually two functions, one
for soliton and one for meron part of w) can be easily obtained by
direct integration of (5) with w from each of the conditions in (2):

uSðz; zÞ ¼−
8

1þ f ðzÞf ðzÞ
1
f ðzÞ

∂f
∂z

; ð7Þ

uMðz; zÞ ¼ 1
f ðzÞ

∂f
∂z

logðf ðzÞf ðzÞÞ: ð8Þ

Thus, from (6), the total exchange energy inside the soliton is

ESEX
CLZ=2

¼ 2
ı
∮jf ðζÞj ¼ 1

1
f ðζÞ

∂f ðζÞ
∂ζ

dζ; ð9Þ

where the fact that jf ðζÞj ¼ 1 on the integration contour is used and
the additional minus sign appears because the original contour of
integration has to be walked clockwise. The function under the
integral is analytic everywhere except the vortex centers zi, where
f ðziÞ ¼ 0. Assuming that line jf ðζÞj ¼ 1 does not cross the particle
boundary, it is possible to tighten the contours around each topological
singularity (vortex or anti-vortex center) and use the residue theorem

ESEX
CLZ=2

¼ 4π∑
i
Res

1
f ðzÞ

∂f ðzÞ
∂z

���
z-zi

: ð10Þ

In particular, for f(z) from Eq. (1) this gives ES=ðCLZ=2Þ ¼ 4π. If there are
several vortices inside the particle, the energy will be multiplied by
their total number, including multiplicities.

For the meron part, the integration boundary is multiply
connected. However, on the inner boundaries (encircling solitons)
jf ðζÞj ¼ 1 and uMðz; zÞ∼log 1¼ 0. Thus, only the integral over the
cylinder's outer boundary remains

EMEX
CLZ=2

¼ 1
2ı

∮∂D
1

f ðζÞ
∂f ðζÞ
∂ζ

logf ðζÞf ðζÞ dζ ð11Þ

for f(z) from Eq. (1) and the nano-element, shaped as circular
cylinder (∂D is jzj ¼ R)

EMEX
CLZ=2

¼
Z 2π

0

ð1−a cos ðφÞ=RÞ log a2−2aR cos ðφÞþR2

R2
V

� �
2ða2=R2−2a cos ðφÞ=Rþ 1Þ

dφ

¼ π log 1−
a2

R2

� �
−2π log

RV

R

� �
; ð12Þ

and the total exchange energy eEX ¼ ðES þ EMÞ=ðμ0γBM2
SπR

2LZ Þ (in
subsequent text all the dimensionless energies, denoted by small
letter e with different sub-/superscripts use the same normal-
ization) is

eEX ¼ L2E
R2 2−log

RV

R
þ log

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

a2

R2

s0
@

1
A; ð13Þ

where γB ¼ 4π, μ0 ¼ 1 in CGS units and γB ¼ 1 in SI [15] and the

exchange length2 LE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ðμ0γBM2

S Þ
q

. It can be seen immediately

1 For analytic u the double integral over D is equal to 0, which is the
manifestation of Cauchy theorem.

2 The other common definition of the exchange length LUPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ðμ0M2

S Þ
q

, used
by Usov and Peschany [8] and in many followup works, is, actually, dependent on
system of measurement units and makes the formulas for the dimensionless
energy and all the derived quantities depend on units too. To avoid this complica-

tion the definition LE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ðμ0γBM2

S Þ
q

is adopted here, which in CGS units (which
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