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a b s t r a c t

We study the magnetic properties of graphitic carbon nitride, g-C4N3. A microscopic tight-binding model
incorporated with the Hatree mean-field approach is adopted, showing that the g-C4N3 exhibits the
significant ferromagnetism induced from the edge states. These edge states appearing on the zigzag
boundaries not only ffdeorm the flat band but also upon proper hole doping provide the electrons with
single polarized spin exciting to the Dirac linear bands and causes g-C4N3 half-metallic. The half-
metallicity survives at room temperature and does not require strong Coulomb repulsion for induction.
The ferromagnetism of these states yielding the half-metallicity refers to the broken or imperfectness of
the honeycomb lattice structure; specifically, the ferromagnetic states are formed on the zigzag
boundaries surrounding the vacancies in the imperfect (some lattice points being missed or removed)
honeycomb lattice. We thus indicate that the half-metallicity should be generally reachable in materials
of this kind of structure.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spintronics [1,2] is considered to be superior to electronics in
industrial applications because of the additional employed func-
tionalities of spins, a quantum number of electrons or holes. The
two physical researches, manipulating the degrees of freedom of
spins and generating spin polarizations, have become inevitable
concerns in designing spintronics devices. Particularly, significant
attentions [3–5] have been drawn to the ferromagnetic semicon-
ductors with high Curie temperatures [6–8] since those materials
make the spin-polarized ferromagnetism created intrinsically. One
of the origins, forming the ferromagnetism, is the incomplete
filling of the electrons on a specific spin-dependent orbital
(d orbital, for example), with causing the unbalanced fillings
between the up and down spins. The ferromagnetism can also
arise from some localized magnetic states in certain materials (for
instance, the ferromagnetic edge state along a given zigzag edge of
the graphene nanoribbon [9–12]). In addition, it is predicted that
the carbon-based compounds yields intrinsic ferromagnetism
from doping carbon atoms [20] in the carbon nitride polymer,
C3N4 [13–16], which is a synthesized material to be applied on the
photocatalysis and the photoelectrochemical energy [17–19].

Furthermore, it is proposed that the two-dimensional graphitic
C3N4 (g-C3N4) polymer be a covalent-bonding semiconductor

[21,22], in which the double and single bonds alternatively inter-
lacing between C and N atoms [see Fig. 1(a)]. There are no dangling
bonds on the lattice sites, i.e., without out-of-plane π bonds that
makes the graphene conductive. Nevertheless, another graphitic
structure was recently proposed by Du et al. in Ref. [20] from the
first-principle calculation, indicating that vacancies or holes will
be induced by doping C atoms in g-C3N4 to replace some of the N
atoms, as a result of yielding g-C4N3 compound. This compound
renders ferromagnetism and exhibits a different (from g-C3N4)
band structure that makes the g-C4N3 become a half-metallic
conductor. However, there is no clear physical pictures beside the
aspect of the band structure to explain the cause of the ferromag-
netism and half-metallicity.

This paper attempts to provide an explicit physical interpreta-
tion on how the ferromagnetism and half-metallicity can be
formed in g-C4N3. We follow Ref. [20] by further considering that
the original un-doped g-C3N4 is deposited on a graphene layer.
Due to the orbital coupling between these two layers, the doping
of the carbon atoms in g-C3N4 will then eliminate the original
double bonds and leave a dangling π bond on each lattice site,
resulting in a conductive g-C4N3. Specifically, the adopted g-C4N3

here is similar to graphene except some atoms are currently
missing [refer to Fig. 1(b)]. Focusing on the g-C4N3 layer, the
zigzag boundaries or edges [dashed lines in Fig. 1(b)] surrounding
the missing atoms are created. We find that those edges are at
large density of states, i.e., forming the flat band, (Fig. 5) and play
crucial roles in forming the ferromagnetism. Besides a significant
flat band that possibly leads to the half-metallicity upon proper
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hole doing, the flat band provides the electrons with single
polarized spin exciting to the Dirac linear bands for conduction
as predicted in Ref. [20]. However, it is surprising that such a
simple level as the Hatree mean-field approach, and as adopted
here, is enough to capture this half-metallicity. Upon the carrier
conservation for each atomic π orbits in the following calculations,
the half-filling is assumed, i.e., the occupation number of electrons
on each lattice site is one, while it must be noted that the fillings
merely alter the chemical potentials but thus does not affect the
arguments that the ferromagnetism and half-metallicity is
induced by those edges and flat bands.

2. Theoretical description

We begin our calculation by considering the microscopic tight-
binding model constituted of the unit-cell Hamiltonian,

H¼ ∑
7

i;j ¼ 1
Vi;jc

þ
i cj þ ∑

7

i ¼ 1
Eic

þ
i ci þ

1
2

∑
þ1=2

s ¼ −ð1=2Þ
Uini;sni;s

 !
; ð1Þ

where ci and (cþi ) is the annihilation (creation) operator for site
i¼ 1;2;…, and 7 whose relative positions [refer to Fig. 1(b)] are
r!1 ¼ ð0;1=2

ffiffiffi
3

p
Þ, r!2 ¼ ð0;

ffiffiffi
3

p
=2Þ, r!3 ¼ ð1=2;2

ffiffiffi
3

p
=3Þ, r!4 ¼ ð1;ffiffiffi

3
p

=2Þ, r!5 ¼ ð1;1=2
ffiffiffi
3

p
Þ, r!6 ¼ ð1=2;0Þ and r!7 ¼ ð3=2;0Þ, respec-

tively. The notation Vi;j represents the nearest hopping between
the i and j sites. Note that there are two kinds of atoms in the
seven atoms comprising the unit cell of g-C4N3, namely, four C
atoms with i¼1, 3, 5 and 7 and three N atoms with i¼2, 4, and 6;
the g-C4N3 structure in Fig. 1(b) are of two types of hopping Vi;j,
the hopping between C and N atoms VCN (V1;2, for instance) and
the hopping between C and C atoms VCC (V5;7, for instance). Two
orbital energies, Ei ¼ EC for i on the C atom sites and Ei ¼ EN for i on
the N atom sites in general can be different. The last term in Eq.
(1), with ni;s and ni;s being the particle number operators, accounts
for the Coulomb repulsion on site i with strength Ui40 which
gives the electrons on site i carrying spin s¼ 71=2 to exert
repulsive forces to spin s ¼ −s. The whole system of infinite two-
dimension is formed by the translation vectors, t

!
1 ¼ ð2;0Þ and

t
!

2 ¼ ð−1;
ffiffiffi
3

p
Þ [see Fig. 1(b)]; i.e., the total Hamiltonian is obtained

by repeating the unit-cell Hamiltonian (1) with displacements
n t
!

1 þm t
!

2, where n and m are integers. Based upon the tight-
binding approximation calculated for the band structure we
extend the unit cell to n and m integers being 3, respectively.
Since the system is unit-cell translation invariant, the Hamiltonian
can be represented in the momentum k

!
representation and the

whole Hamiltonian on a basis of the crystal momentum k
!

is block
diagonal. For brevity, in what follows, we will use ni;s to notate

〈ni;s〉, the quantum-thermal average number of the particle occu-
pation. The block Hamiltonian for spin-s subsystem is then of the
form

Hs ¼

EC;s M12 0 0 0 M16 M17

M21 EN;s M23 0 0 0 0
0 M23 EC;s M34 0 0 M37

0 0 M43 EN;s M45 0 0
0 0 0 M54 EC;s M56 M57

M61 0 0 0 M65 EN;s 0
M71 0 M73 0 M75 0 EC;s

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ð2Þ

with the matrix element Mij ¼∑lV i;j expði k
!� Tl

!Þ, T!l ¼ 0; 7 t
!

1; 7
t
!

2, and 7 t
!

17 t
!

2. The site energy EC;s ¼ EC þ UCnC;s for the C
atom sites (EN;s ¼ EN þ UNnN;s for the N atom sites) takes into
account the Hatree mean-field energy UCnC;s (UNnN;s ), which is
induced by the spin-s electrons. Note that k

!
is restricted within

the first Brillouin zone (hexagonal in the present case) constructed
in the reciprocal lattice formed by vectors, b

!
1 ¼ 2πð1=6; ð6

ffiffiffi
3

p
Þ−1Þ

and b
!

2 ¼ 2πð0; ð3
ffiffiffi
3

p
Þ−1Þ.

To determine the occupation ni;s, we consider minimizing the
free energy, [25]

F ¼−
1
N
kBT ∑

α; k
!

;s

lnð1þ eðμ−Eα;sÞ=kBT Þ− 1
2N

∑
i;s
Uini;sni;s ; ð3Þ

subject to the constrain of half-filling (i.e., occupation number on
each atomic π orbit is one),

ni;s þ ni;s ¼ 1:

Here Eα;s is the α�th eigenvalues of the spin-s Hamiltonian (2), μ is
the chemical potential determined by

∑
i;s
ni;s ¼ 7¼∑

α;s
f DðEα;sÞ; ð4Þ

with f DðϵÞ ¼ f1þ exp½ðϵ−μÞ=ðkBTÞ�g−1 being the Fermi–Dirac distri-
bution function , μ the chemical potential, kB the Boltzmann
constant, and T the temperature. The minimization problem can
be solved by adopting the Lagrange multiplier to find appropriate
seven λi and fourteen ni;s and ni;s that satisfy, fourteen (i¼ 1;2;…7
and s¼ 71=2)

∇F ¼∑
i
λi∇gi; ð5Þ

equations with ∇¼∑7
i ¼ 1

∂
∂ni;s

êi;s and êi;s being the unit vector, and
seven (i¼ 1;2;…7)

gi ¼ ðni;s þ ni;s−1Þ ¼ 0: ð6Þ

Fig. 1. Two different carbon nitride structures. The black and gray solid circles represent C and N atoms, respectively. (a) The structure of g-C3N4 with the double and single
bonds alternatively interlacing between C and N atoms. (b) The structure of 2�2 g-C4N3 unit cell with the π orbit on each lattice sites. The gray square represents the unit
cell with t

!
1 and t

!
2 being the translation vectors. The dash lines passing through the zigzag heads indicates the zigzag edges surrounding the vacancy (missing atoms of a

honeycomb lattice). The lattice sites in a unit cell are labeled by 1, 2, …, and 7.
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