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a b s t r a c t

Effects of the bond dilution on the critical temperatures, phase diagrams and the magnetization behaviors
of the isotropic and anisotropic quantum Heisenberg model have been investigated in detail. For the
isotropic case, bond percolation threshold values have been determined for several numbers of two (2D)
and three (3D) dimensional lattices. In order to investigate the effect of the anisotropy in the exchange
interaction on the results obtained for the isotropic model, a detailed investigation has been made on a
honeycomb lattice. Some interesting results, such as second order reentrant phenomena in the phase
diagrams have been found.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quenched randomness effects are very important in modeling
real materials, since consideration of these effects simulates a
realistic model of real materials. Real materials have some
uncontrollable defects and these defects can be modeled by
introducing site dilution (randomly distributed non-magnetic
atoms), bond dilution (randomly broken bonds between the
magnetic atoms) or both of them into the related model. It is a
well known fact that, Heisenberg model produces more realistic
results than the Ising model, in order to explain the magnetic
properties of real materials. Thus, it is important to work on the
Heisenberg model with these quenched randomness effects. These
quenched randomness effects produce different behaviors in the
magnetic properties of the model, e.g. different phase transition
characteristics from the pure model (i.e. the model without any
quenched randomness effects).

Heisenberg model with quenched randomness effects has been
studied widely by a variety of methods, such as spin-1/2 (S-1/2)
isotropic Heisenberg model with bond dilution on 2D lattices with
Monte Carlo (MC) simulation [1–4], anisotropic model (by means
of the XXZ model) on 2D lattices with real space renormalization
group (RSRG) technique [5], S-1/2 anisotropic quantum Heisen-
berg model with site dilution with RSRG [6], with mean field
approximation (MFA) [7] and with effective field theory (EFT)
[8,9]. Detailed examination of the percolation probability can be
found in Ref. [10]. On the other hand, random bond distributed
systems in which spin glass phases originate have been studied, e.g.
discrete distribution on S-1/2 Heisenberg model with pair

approximation [11,12], density matrix product approximation
[13], Gaussian distribution with imaginary time Grassmann field
theory [14] and S-1 Heisenberg model with discretely distributed
random bonds with exact diagonalization method [15]. Besides,
both site and bond diluted systems have been studied with
quantum MC on 2D lattices [16] and S-1/2 Heisenberg model with
site-bond correlated dilution (which covers uncorrelated site
dilution as a limit) on 2D and 3D lattices with RSRG [17] and MC
[18], and also using a variational principle for the free energy [19].
All of these work are related to the isotropic Heisenberg model or
XXZ model.

The aim of this work is to determine the effect of the bond
dilution on the phase diagrams and the thermodynamic properties
of the anisotropic quantum Heisenberg model. By anisotropy, we
do not restrict ourselves with XXZ model. Namely, we want to
determine the effect of the anisotropy in the exchange interaction
on the phase transition characteristics not only by means of XXZ
model. The method is EFT with two spin cluster approximation
[20]. EFT approximation can provide results that are superior to
those obtained within the traditional MFA, due to the considera-
tion of self-spin correlations which are omitted in the MFA.

EFT for a typical magnetic system starts by constructing a finite
cluster of spins which represents the system. Callen–Suzuki spin
identities [21,22] are the starting point of the EFT for the one spin
clusters. If one expands these identities with differential operator
technique [23], multi-spin correlations appear, and in order to avoid
from the mathematical difficulties, these multi-spin correlations are
often neglected by using decoupling approximation (DA) [24].
Working with larger finite clusters will give more accurate results.
Callen–Suzuki identities have been generalized to two spin clusters
in Ref. [25] (namely EFT-2 formulation). This EFT-2 formulation has
been successfully applied to a variety of systems, such as quantum
S-1/2 Heisenberg ferromagnet [26,27] and antiferromagnet [28]
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systems, classical n-vector model [29,30], and spin-1 Heisenberg
ferromagnet [31,32].

This paper is organized as follows: In Section 2, we briefly
present the model and formulation. The results and discussions
are presented in Section 3, and finally Section 4 contains our
conclusions.

2. Model and formulation

We consider a lattice which consists of N identical spins
(S�1=2) such that each of the spins has z nearest neighbors. The
Hamiltonian of the system is given by

H¼−∑
〈i;j〉

ðJðijÞx sxi s
x
j þ JðijÞy syi s

y
j þ JðijÞz szi s

z
j Þ ð1Þ

where sxi ; s
y
i and si

z denote the Pauli spin operators at a site i.
JðijÞx ; JðijÞy and JðijÞz stand for the components of the exchange interac-
tion J (in other words anisotropy in the exchange interaction)
between the nearest neighbor spins i and j. The sum is carried over
the nearest neighbors of the lattice. The bonds between the spins i
and j are randomly distributed via

PðJðijÞÞ ¼ cδðJðijÞ−JÞ þ ð1−cÞδðJðijÞÞ ð2Þ
in the bond dilution problem. The distribution given by Eq. (2)
distribute bonds randomly between lattice sites as c percentage of
bonds are closed and remaining 1−c percentage of bonds are open,
i.e. c is the concentration of closed bonds in the lattice. Here δ
stands for the delta function and c is a real number which is
defined within the range of 0≤c≤1. The distribution given by Eq.
(2) reduces to the system with homogenously distributed bonds
(i.e. pure system) for c¼1.

We use the two spin cluster approximation as an EFT formula-
tion, namely EFT-2 formulation [20]. In this approximation, we
choose two spins (namely s1 and s2) and treat the interactions in
this two spin cluster exactly. In order to avoid some mathematical
difficulties we replace the perimeter spins of the two spin cluster
by Ising spins (axial approximation) [30]. With the procedure
defined in Ref. [30], we get an expression for the magnetization
per spin as

m¼ 1
2
ðsz1 þ sz2Þ

� �� �
r

¼ h′þ
X′0

sinhðβX′0Þ
coshðβX′0Þ þ expð−2βJð12Þz ÞcoshðβY ′0Þ

* +* +
r

ð3Þ

where β¼ 1=ðkBTÞ, kB is Boltzmann constant and T is the tempera-
ture. The inner average bracket in Eq. (3) (which has no subscript)
stands for thermal average and the outer one (which has subscript
r) is for the configurational averaging which is necessary for
including the effect of the random bond distribution. The para-
meters in Eq. (3) are given by

X′0 ¼ ½ðJð12Þx −Jð12Þy Þ2 þ h′2þ�1=2

Y′0 ¼ ½ðJð12Þx þ Jð12Þy Þ2 þ h′2− �1=2 ð4Þ

h′2þ ¼ h1′þ h′2
h′2− ¼ h′1−h′2 ð5Þ

h′1 ¼∑
k
Jð1kÞz szk

h′2 ¼∑
l
Jð2lÞz szl ð6Þ

where szk stands for the z component of the nearest neighbor of the
spin s1 while sl

z stands for the z component of the nearest
neighbor of the spin s2. The sums in Eq. (6) are over the nearest
neighbor sites of the sites labeled 1 and 2, respectively. The

configurational averages can be calculated via integration of the
expression by using Eq. (2), over the all bonds of the treated
cluster.

m¼
Z

dJð12ÞPðJð12ÞÞ∏
k;l
dJð1kÞdJð2lÞPðJð1kÞÞPðJð2lÞÞ

*

h′þ
X′0

sinhðβX′0Þ
coshðβX′0Þ þ expð−2βJð12Þz ÞcoshðβY′0Þ

+
ð7Þ

where product is taken over the nearest neighbors of the sites
1 and 2. If we perform the integration concerning the bond
between the sites 1 and 2 then we get the following expression,

m¼
Z

∏
k;l
dJð1kÞdJð2lÞPðJð1kÞÞPðJð2lÞÞh′þ

*

� c
X″0

sinhðβX″0Þ
cosh

ðβX″0Þ
�

þexpð−2βJzÞcoshðβY″0Þ þ
1−c
h′þ

sinhðβh′þÞ
coshðβh′þÞ þ coshðβh−′Þ

��
ð8Þ

where

X″0 ¼ ½ðJx−JyÞ2 þ h′2þ�1=2

Y″0 ¼ ½ðJx þ JyÞ2 þ h′2− �1=2 ð9Þ

Eq. (8) can be written in terms of the differential operators using
differential operator technique [23] and it is found as

m¼
Z

∏
k;l
dJð1kÞdJð2lÞPðJð1kÞÞPðJð2lÞÞ expðh1′∇xÞexpðh2′∇yÞ

* +
f ðx; yÞjx ¼ 0;y ¼ 0

ð10Þ
where

f ðx; yÞ ¼ czþ
X0

sinhðβX0Þ
coshðβX0Þ þ expð−2βJzÞcoshðβY0Þ

þð1−cÞ sinhðβzþÞ
coshðβzþÞ þ coshðβz−Þ

ð11Þ

and

X0 ¼ ½ðJx−JyÞ2 þ z2þ�1=2

Y0 ¼ ½ðJx þ JyÞ2 þ z2−�1=2
zþ ¼ xþ y; z− ¼ x−y: ð12Þ

In Eq. (10), the parameters ∇x ¼ ∂=∂x and ∇y ¼ ∂=∂y are the usual
differential operators in the differential operator technique. Differ-
ential operators act on an arbitrary function via

expða∇x þ b∇yÞgðx; yÞ ¼ gðxþ a; yþ bÞ ð13Þ
with any constant a and b.

Now let us assume that each of s1 and s2 has number of z0
distinct nearest neighbors and both of them have z1 common
nearest neighbors. This means that, in Eq. (6), the two sums have
number of z1 common terms. If we take the integration in Eq. (10)
with the help of Eqs. (2) and (6) and using DA [24] we get an
expression,

m¼ ½Ax þmBx�z0 ½Ay þmBy�z0 ½Axy þmBxy�z1
� �

f ðx; yÞjx ¼ 0;y ¼ 0 ð14Þ
for the magnetization. The coefficients are defined by

Ax ¼ c coshðJz∇xÞ þ ð1−cÞ; Bx ¼ c sinhðJz∇xÞ
Ay ¼ c coshðJz∇yÞ þ ð1−cÞ; By ¼ c sinhðJz∇yÞ
Axy ¼ c cosh½Jzð∇x þ ∇yÞ� þ ð1−cÞ; Bxy ¼ c sinh½Jzð∇x þ ∇yÞ�: ð15Þ

With the help of the Binomial expansion, Eq. (14) can be
written as

m¼ ∑
z0

p ¼ 0
∑
z0

q ¼ 0
∑
z1

r ¼ 0
C′pqrmpþqþr ð16Þ
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