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a b s t r a c t

Magnetostatic Maxwell equations and the Landau–Lifshitz–Gilbert (LLG) equation are combined to a
multiscale method, which allows to extend the problem size of traditional micromagnetic simulations.
By means of magnetostatic Maxwell equations macroscopic regions can be handled in an averaged and
stationary sense, whereas the LLG allows to accurately describe domain formation as well as
magnetization dynamics in some microscopic subregions. The two regions are coupled by means of
their strayfield and the combined system is solved by an optimized time integration scheme.

& 2013 CERN. The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Micromagnetic simulations are utilized in a wide range of
applications ranging from magnetic storage devices, permanent
magnets to spintronic devices. With increasing complexity of the
devices more properties have to be included in the simulations in
order to predict the functional behavior of the structures accu-
rately. State of the art micromagnetic simulations can handle
systems with several millions of unknowns. In order to tackle
these large scale problems both (i) new hardware architectures
[1,2] as well as (ii) advanced numerical methods are required.

Newly developed numerical methods focus on speeding up the
two most time consuming parts in micromagnetic simulations,
which are the calculation of the strayfield and the time integration
of the LLG equation. Advanced time integrations schemes can be
found in Refs. [3–8]. For the calculation of the strayfield advanced
FFT algorithms [9,10], fast multipole methods [11,12], nonuniform
grid methods [13], FEM/BEM coupling approaches including com-
pression of the boundary matrix [14–16], and tensor grid methods
[17,18] have been developed.

Aside from new algorithms solving the micromagnetic model
efficiently for systems with many degrees of freedom, it is often
possible to choose a simplified physical model to describe at least
some parts of the total problem. By this way the number of degrees
of freedom can be reduced dramatically without loosing accuracy in
regions where it is desired. Within this paper we will utilize the fact
that models described by the LLG equation require very fine grained
discretizationwhich can lead to impractically large system sizes. We
propose using the LLG equation to describe only those regions of
the problem where detailed information about the domain struc-
ture such as domain walls and vortex structures are required. For
the rest of the model a macroscopic description via magnetostatic
Maxwell equations is chosen. Since it does not resolve the detailed
domain structure it allows to use much coarser discretization.

In contrast to the multiscale method presented in this paper
there exist methods which solve combined LLG–Maxwell equa-
tions within the whole problem region [19–21]. These methods
extend the ordinary LLG model, by allowing to describe eddy
currents or other dynamic effects, but they do not address the
discretization size constraint and are therefore not suitable for
large scale problems.

The structure of the paper is as follows. Section 2 summarizes
the methods that are used to individually solve the LLG equations
or magnetostatic Maxwell equations respectively. How the two
systems can be coupled in an efficient way is described in Section
3. Finally in Section 4 the multiscale algorithm is applied to the
simulation of a magnetic giant magnetoresistance (GMR) read
head and numerical results and benchmarks are presented.
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2. Fundamentals

For the coupling of micromagnetism and magnetostatic Max-
well equations the full model is divided into two separated regions
(see Fig. 1). The LLG equation is used to describe the first region
Ωllg , where domain structure, short range interactions or the
magnetization dynamics of the magnetic parts is of great interest.
The second region Ωmax is described by magnetostatic Maxwell
equations, which describe the magnetic state in a spatially
averaged sense and without dynamics. Since both models contain
the external field as a source term, coupling via the strayfield can
be achieved in a straightforward way. The strayfield created from
the LLG model can be considered as an external field of the
Maxwell model and vice versa. An additional region Ωcoil allows
to define currents in a nonmagnetic medium, which in turn
creates the source field for the magnetic model. The solution of
the open-boundary problem requires the definition of the bound-
aries of the LLG-region (Γllg) as well as of the Maxwell region
(Γmax). In the following subsections it is shown how the two sub-
problems are solved individually.

2.1. LLG

The LLG equation describes how magnetic polarizations J (with
a fixed modulus Js) evolve in an effective field Heff . It consists of a

precessional term as well as a phenomenological damping term

∂J
∂t

¼−
jγj

1þ α2
J�Heff−

α

1þ α2
jγj
Js

J� J�Heff ð1Þ

where α is the Gilbert damping constant, Js is the saturation
polarization and jγj ¼ μ0jγej ¼ 2:210175� 105 m=As is the reduced
gyromagnetic ratio (with μ0 the permeability of the free space and
γe the gyromagnetic ratio of the electron). The effective field can
be split into four contributions as follows:

Heff ¼Hex þHani þHdemag þHext

¼ 2A

J2s
ΔJ−

2

J2s
K1ðJ � aÞaþHdemag þHext ð2Þ

Hex describes the short-range exchange interaction parametrized
by the exchange constant A. Hani stands for the magneto-
crystalline anisotropy field with the uniaxial anisotropy constant
K1 and the easy axis a. The magnetic strayfield Hdemag describes
the long-range interaction between the magnetic moments within
the magnetic medium. Hext is the applied field, which can for
example be created by an electric coil, or as described later on by a
Maxwell model. In addition to the mentioned fields several other
contributions are possible, like terms taking into account thermal
fluctuations or magneto-elastic interactions.

To calculate the strayfield created by a given magnetization
distribution, which is needed for Hdemag and also for the interac-
tion between LLG and Maxwell parts, the Fredkin–Koehler method
[14] is used. Basically the following equations for the scalar
potential ullg are solved for given J:

∇2ullg ¼∇ � J in Ωllg ð3aÞ

∇2ullg ¼ 0 in R3\Ωllg ð3bÞ

½ullg � ¼ 0 on Γllg ð3cÞ

∂ullg

∂n

� �
¼ n � J on Γllg ð3dÞ

where ½x� means the jump of value x at the surface of the LLG
region. The strayfield finally reads as Hdemag ¼ −μ−10 ∇ullg .

A detailed description of how the LLG equation is actually
solved as well as a proper preconditioning method to speed up
calculations of large problems can be found in [3].

Fig. 1. Example geometry which demonstrates model separation into LLG region
Ωllg and Maxwell region Ωmax (and in this case in an electric coil region Ωcoil). The
boundaries of the regions are called Γllg and Γmax respectively.

Fig. 2. The example setup consists of a GMR sensor element in between two macroscopic shields (5 μm� 2 μm� 2 μm). Beyond the GMR sensor a magnetic storage medium
is indicated (it will not be considered for the calculation of the transfer curves).
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