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a b s t r a c t

We report here an analytic prediction of the domain-wall (DW) tilting caused by the Oersted field in the
current-driven DW motion along ferromagnetic nanowires that have perpendicular magnetic anisotropy.
By adopting the variational principle for energy minimization, the DW tilting angle is determined as a
function of the current density with a finite threshold current density, above which the DW becomes
elongated along the nanowire with two narrow domains at its edges. These results predict the minimum
data bit size as well as the maximum current density needed for realizing stable DWs in DW-mediated
nanodevices.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Current-induced domain-wall (DW) motion in ferromagnetic
nanowires [1,2] with perpendicular magnetic anisotropy (PMA)
provides useful features [3,4] for DW-based devices such as
magnetic random access memory and racetrack memory [5]. In
these devices, the data bits are stored in the form of the DWs and
the electric current is used to move the DWs to control their
position. For a fast device operation, it is essential to use a high
current density with these devices in order to induce a high DW
speed [6]. However, the use of such a high current density induces
a considerably strong Oersted field inside the devices, which in
turn deforms the DWs. Such deformation limits the minimum size
of the domains as well as the maximum current density required
for achieving stable DW motion. In this study, we present an
analytic theory on the effects of the Oersted field on the DW
deformation.

This paper is organized as follows. In Section 2, we consider the
simplest case of straight DWs. Then, in Section 3, the discussion is
extended to arbitrarily shaped DWs for energy minimization. The
numerical results are given in Section 4 to compare with the
predictions of analytical calculations. Section 5 concludes this paper.

2. Straight DWs as the simplest case

A nanowire structure with a thin ferromagnetic layer sand-
wiched by two nonmagnetic layers is considered for this study,
and its cross-sectional view is shown in Fig. 1(a). The width and

thickness of the nanowire are denoted by w and t, respectively.
The ferromagnetic layer of thickness tm is centered at z¼0. As
shown in Fig. 1(b), a DW is initially positioned at y¼0 in the
nanowire. When a current is injected into the nanowire, the
current generates a nonuniform Oersted field, resulting in the
distortion of the DW. As the simplest case of such a distortion, we
first consider a straight DW tilted by an angle θ, as shown in
Fig. 1(c). Generalization to a curved DW profile, as exemplified by
Fig. 1(d), is discussed in Section 3. In this calculation, we use
the coordinate convention that prescribes that the origin
(i.e., x¼ y¼ 0) is placed at the center of the DW, irrespective of
the DW motion due to the translational symmetry along the
nanowire. The width of the DW is assumed to be zero for
simplicity and the effect of the finite DW width is discussed later.
We consider here only the case in which the domain above
(below) the DW is magnetized along +z (−z) with the saturation
magnetization MS. The complementary case can be easily
extended from the present case.

For an infinitesimal variation δθ in θ, the variation δEO in the
Zeeman energy due to the Oersted field is given by

δEO ¼ μ0

Z tm=2

−tm=2

Z w=2

−w=2

Z x tan ðθþδθÞ

x tan θ
2MSHOZðx; y; zÞ dy dx dz; ð1Þ

where μ0 is the magnetic permeability in vacuum and HOZ is the
z-component of the Oersted field. Because tm5w for a typical
geometry of lithography-patterned PMA nanowires such as Pt/Co/Pt
films [7], the variation in HOZ along the ferromagnetic layer's thickness
is negligible and allows the approximation HOZðx; y; zÞ≅HOZðx; y;0Þ
inside the integral with respect to dz. Then, Eq. (1) can be rewritten as

δEO ¼ 2μ0MStm sec2 θ δθ

Z w=2

−w=2
HOZðx; x tan θ;0Þx dx: ð2Þ
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From the Biot–Savart law for steady currents along straight paths,
HOZðx; y;0Þ is given by

HOZðx; y;0Þ ¼−
J
2π

Z t=2

−t=2

Z w=2

−w=2

ðx−x′Þ
ðx−x′Þ2 þ ðz′Þ2

dx′ dz′;

¼ J
4π

2ðw−2xÞ tan −1 t
w−2x

� �
−2ðw þ 2xÞ tan −1 t

wþ 2x

� �
þt ln½t2 þ ðw−2xÞ2�−t ln ½t2 þ ðwþ 2xÞ2�;

8><
>:

ð3Þ

for the case of uniform current density J across the nanowire's cross-
section. After substituting Eq. (3) into Eq. (2) and integrating the latter,
δEO can be written as

δEO≅−
J
2π

μ0MStmtw2 sec2 θ δθ; ð4Þ

up to the first leading term with respect to t=w.
The DW energy EW for a given θ is written as EW ¼

sWtm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þw2 tan 2 θ

p
¼ sWwtm sec θ, where sW is the DW

energy density per unit area. The variation δEW in the DW energy
is then easily obtained as

δEW ¼ sWwtm sec2 θ sin θ δθ; ð5Þ

for an infinitesimal variation δθ. Note that the DW energy induces
the DW tension, for which a shorter DW length is favorable.

For an infinitesimal variation δθ the variation EM in the
magnetostatic energy due to the dipolar interaction is given by

δEM ¼ μ0
2

Z tm=2

−tm=2

Z w=2

−w=2

Z x tan ðθþδθÞ

x tan θ
2MSHMZðx; y; zÞ dy dx dz; ð6Þ

where HMZ is the z-component of the dipolar field. The factor 1/2
comes from the nature of the self-interaction energy. As in the
case of HOZ, let us assume here that HMZðx; y; zÞ≅HMZðx; y;0Þ inside
the integral. Then, Eq. (6) can be rewritten as

δEM ¼ μ0MStm sec2 θ δθ

Z w=2

−w=2
HMZðx; x tan θ;0Þx dx: ð7Þ

here HMZðx; y; zÞ can be calculated by integrating the surface
density of magnetic pole strength over the upper and lower

interfaces

HMZðx; y; zÞ ¼
MS

4π

Rw=2
−w=2

R x′ tan θ
−∞ ½Gþðx; y; z; x′; y′Þ−G−ðx; y; z; x′; y′Þ� dy′ dx′;

−
Rw=2
−w=2

Rþ∞
x′ tan θ½Gþðx; y; z; x′; y′Þ−G−ðx; y; z; x′; y′Þ� dy′ dx′;

8<
:

ð8Þ
where
G7 ðx; y; z; x′; y′Þ ¼ ðz7tm=2Þ=½ðx−x′Þ2 þ ðy−y′Þ2 þ ðz7tm=2Þ2�3=2.
This integration leads to

HMZðx; x tan θ;0Þ ¼ MS

π
½FþðxÞ−F−ðxÞ�; ð9Þ

where F7 ðxÞ ¼ tan −1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2m þ ðw∓2xÞ2 sec2 θ

q
=tm tan θ

� �
. After sub-

stituting Eq. (9) into Eq. (7) and integrating the latter, δEM can be
obtained as

δEM≅−
μ0M

2
Swt2m
2π

½lnð4w=tmÞ−1−f dðθÞ�sec2 θ sin θ δθ; ð10Þ

up to the first leading term with respect to tm=w, where
f dðθÞ ¼ lnð cos θÞ−lnðsec θ− tan θÞ= sin θ. Since the maximum varia-
tion in f dðθÞ is found to be about 0.3 (that is at least one order
smaller than the typical values of lnð4w=tmÞ−1) in the calculations
that follow, we replace f dðθÞ by the average value 〈f dðθÞ〉
(¼ π=2−ln 2) over [−π=2, π=2].

It should be noted that the dependence of δEM on θ is the same
as the dependence of δEW on θ. Thus, δEW þ δEM can be written in
a unified form as

δEW þ δEM ¼ s′Wwtm sec2 θ sin θ δθ; ð11Þ
by defining the effective wall energy density s′W as

s′W≡sW−
μ0M

2
Stm

2π
½lnð4w=tmÞ−1−〈f dðθÞ〉�: ð12Þ

For the case of 0.5-nm thick and 300-nm wide Pt/Co/Pt nanowires
with typical magnetic parameters sW ¼ 4:0 mJ=m2 and MS ¼ 1:4�
106 A=m, the effective wall energy density s′W is estimated to be
2.8 mJ/m2, which is 30% smaller as compared to the pure sW due
to the dipolar interaction. We note that a similar reduction is
observed for the case of circular domains [8]. It is also worthwhile
to confirm that the variation due to the replacement of f dðθÞ by
〈f dðθÞ〉 is less than 0.1 mJ/m2, which provides an upper bound on
the error due to such replacement.

Fig. 1. (a) Cross-sectional view of the structure of the layer in these calculations. Planar views of (b) a straight DW at rest without current injection, (c) a straight DW with a
tilting angle θ, and (d) a curved DW with y¼ f ðxÞ.
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