
Deflection modeling of permanent magnet spherical chains in the
presence of external magnetic fields

Kilian O'Donoghue, Pádraig Cantillon-Murphy n

School of Engineering, University College Cork, College Road, Cork, Ireland

a r t i c l e i n f o

Article history:
Received 1 February 2013
Received in revised form
1 May 2013
Available online 16 May 2013

Keywords:
Permanent magnet
Sphere
Spherical chain
Catheter deflection
Magnetic guidance

a b s t r a c t

This work examines the interaction of permanently magnetised spheres in the presence of external
magnetic fields at the millimetre scale. Static chain formation and deflection models are described for N
spheres in the presence of an external magnetic field. Analytical models are presented for the two sphere
case by neglecting the effects of magnetocrystalline anisotropy while details of a numerical approach to
solve a chain of N spheres are shown. The model is experimentally validated using chain deflections in
4.5 mm diameter spheres in groups of 2, 3 and 4 magnets in the presence of uniform magnetic fields,
neglecting gravitational effects, with good agreement between the theoretical model and experimental
results. This spherical chain structure could be used as an end effector for catheters as a deflection
mechanism for magnetic guidance. The spherical point contacts result in large deflections for navigation
around tight corners in endoluminal minimally invasive clinical applications.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this work, a model for the interaction of a chain of
permanently magnetised spheres with external magnetic and
gravitational potential fields is presented. The use of millimetre
sized spheres as a magnetic navigation device in minimally
invasive surgeries is explored. It has been found that chains of
spherical magnets used as distal attachments can provide greater
deflections for catheter devices than mechanical catheters in
specific settings [1]. The greater deflections that are achieved with
the current method allows the use of much lower strength
steering magnets than those used in current magnetic navigation
systems such as the commercially available Stereotaxis Niobe [1]
and in research systems such as those presented by Martel et al.
[2,3]. With a lower magnet strength requirement, a magnetic
steering platform can potentially be made small enough to be a
semi-portable system that can be easily setup in an operating
room for a clinical procedure without modification to the room or
impeding access to the patient with bulky equipment.

A classical physics formulation based on minimisation of the
systems potential energy is employed. This is achieved analytically
for simple cases (N¼2) and numerically for larger numbers of
spheres. In the static case, a system will approach a stable
equilibrium position that minimises the potential energy of the

system, or in other words, when all the forces and moments sum
to zero [4].

A similar approach has been used by Stambaugh et al. to
examine pattern formation in layers of permanent magnets [5,6]
where numerous bar magnets were encapsulated in spheres and
placed in layers. These layers were then shaken for a period until
the layers reached an equilibrium position.

The majority of magnetic chain modeling to date has been on
the micro- and nano-scales. For example, chain formation of
ferromagnetic gold nanoparticles has been demonstrated experi-
mentally [7] and self-assembly of magnetic nanoparticles on GaAs
substrates have been shown to form chains at moderate applied
fields of 0.7 T and form discrete clusters when exposed to large
17 T fields [8]. Dynamic modelling of the time response of
magnetic particles has also been analysed when in nanowire [9]
and particulate dispersion formations [10]. Similar methods have
been used to analyse the electrostatic chain formation of lipid
headgroups using Monte Carlo simulations [11].

The analysis of solid permanent magnets differs significantly
from magnetic particles however. For example deformation of
spherical droplets of magnetic particles into prolate ellipsoids
significantly complicates the required calculations [12]. These
effects can be neglected in solid permanent magnets. Also satura-
tion and temperature effects are easily neglected for modern
permanent magnet materials (e.g. NdFeB) under typical conditions
[13]. Chains of permanently magnetised spheres have been used in
the analysis of sound propagation due to the strong attraction
force between the spheres [14] but there has been little or no
research examining how a chain would interact with external
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fields. Beleggia et al. have presented an extensive set of papers
exploring the force between permanent magnets in arbitrary
shapes using potential energy formulations [15–17], but this was
limited to force calculations and not shape formation. Magnetic
catheter deflection has been demonstrated by Martel et al. where a
catheter tip comprising of ferromagnetic spheres, which are free to
rotate in compartments, has been steered using a modified MRI
machine [2,18]. The Stereotaxis Niobe system makes use of
cylindrical permanent magnets as a catheter tip and uses large
steering permanent magnets to control the catheters position
[1,19].

This paper is structured as follows. First, a theoretical model of
the interaction between the spheres and external potential fields
when constrained to a 2D plane is presented. Analytical expres-
sions are derived for the two sphere case, while numerical
simulations are described for chains of N spheres. These models
are then tested experimentally with chains exposed to uniform
magnetic fields up to 35 mT. Finally the results are discussed in the
context of the clinical application to catheter steering.

2. Theoretical modeling

2.1. Spherical permanent magnets

Consider the magnetic field of a uniformly magnetised sphere
of radius a. The magnetic field is given by Eq. (1) [20], where Ms is
the volume magnetisation in A/m, r is the distance from the centre
of the sphere in m, θ is the angle measured from the direction of
magnetisation, r̂ is a unit vector pointing in the radial direction, θ̂
is a unit vector in a clockwise sense about the x axis starting from
z¼0, and μ0 is the magnetic permeability of free space:

BðrÞ ¼
μ0

2
3 Ms ro0

μ0Ms

3
a3

r3
ð2 cos θr̂ þ sin θθ̂Þ r≥0

8><
>: ð1Þ

The magnetic field outside the radius of the sphere is identical to
the magnetic field resulting from an ideal magnetic dipole whose
dipole moment is given by m¼ 4

3πa
3Ms. The dipole is aligned with

the direction of the sphere's magnetisation. Hence in all calcula-
tions, the fields generated by each sphere are assumed to be an
ideal dipole, which drastically simplifies the interaction equations.

2.2. Magnetic energy

If each magnet can be considered as a dipole, the standard
Zeeman energy formula U ¼ −m⋅B can be used to calculate the
potential energy due to an external magnetic field. For the dipole–
dipole interaction between each sphere, Eq. (2) may be used to
determine the potential energy resulting from the interaction [21].

Uij
dd ¼

μ0
4πr3

½mi �mj−3ðmi � r̂ ijÞðmj � r̂ ijÞ� ð2Þ

In addition to the dipole interactions, the magnetocrystalline
anisotropy of the material must also be considered. This aniso-
tropy tends to move the magnetisation of a permanent magnet
away from its easy axis to minimise its internal potential energy.
The magnetocrystalline anisotropic energy of a magnet of volume
V with a anisotropy constant K may be approximated by [20]

Uma ¼ VK sin 2 γ ð3Þ
where γ is the angle between the direction of magnetisation and
the easy axis of the magnet. By summing the energy resulting from
the external field, the dipole–dipole interaction and the magneto-
crystalline anisotropy, the total energy of the system may be
formulated, which in turn can be minimised to determine the

final formation of a group of spheres. In this work, the anisotropy
term will only be considered for the first sphere in the chain,
which is assumed to be locked in place. Hence the only way for the
sphere to minimise its potential energy is by shifting its magne-
tisation away from the easy axis. For all other spheres in the chain,
it is assumed that their mechanical alignment minimises the
potential energy and the anisotropy term given by Eq. (3) can be
neglected.

2.3. Two sphere case

Consider a simple system with two spherical magnets in a 2D
plane. The anisotropic energy term is initially neglected to facil-
itate an analytical solution for this simplified case. Fig. 1 shows
two identical spheres of diameter D. The first sphere is rigidly
fixed in place at the origin and aligned with the x-axis, while the
second is free to rotate around the first magnet a diameter
distance away. Its orientation is also free to rotate around its
own principal axis. A uniform magnetic field is applied perpendi-
cular to the alignment of the first sphere.

The position of the centre point of the second sphere is given
by Eq. (4) and the magnetisation of each sphere is given by Eqs.
(5) and (6)

r¼Dð cos ϕx̂ þ sin ϕŷÞ ð4Þ

m1 ¼m1x̂ ð5Þ

m2 ¼m2ð cos ψ x̂ þ sin ψ ŷÞ ð6Þ
Combining Eqs. (2), (4)–(6) the energy of the second sphere m2

due to dipole–dipole interaction with the first sphere m1 can be
simplified to Eq. (7).

Uint ¼ U12
dd ¼

μ0m1m2

4πD3 ½ cos ψ−3 cos ϕ cos ðϕ−ψÞ� ð7Þ

If the two spheres are exposed to a uniform magnetic field at right
angles to the x-axis and the first sphere, m1, remains fixed in
space, the second sphere's potential energy is adjusted by the
Zeeman contribution given in Eq. (8).

Uext ¼−m2B sin ψ ð8Þ
The Zeeman energy contribution of m1 is neglected as it is fixed

in position and its own potential energy does not affect the final
position of the system. In order to determine the minimum energy
position of the system, the partial derivative with respect to the
two independent variables must be calculated, which results in
Eqs. (9) and (10) when the magnetic strength of each sphere is

Fig. 1. In this analytical model for two magnetic spheres in contact, the first sphere
is rigidly fixed in place and aligned with the x-axis. The centre point of the second
sphere is free to move in a circular path to some angle ϕ relative to the first sphere
and also to rotate around its own axis by some angle ψ . A uniform external
magnetic field B is also present and points in the y direction.
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