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a b s t r a c t

We investigate the influences of the boundary conditions on the ground state properties of a dimerized
S¼1 Ising chain with single-ion anisotropy, which are solved exactly by means of a mapping to the spin-
1/2 Ising chain with the alternating transverse fields and the Jordan–Wigner transformation. We obtain
the exact results of the minimal energy gap Δ0 for exciting a fermion quasi-particle, the minimal energy
gap Δh for exciting a hole and the ground state phase diagram under various boundary conditions. The
results show that the boundary conditions do not change the quantum phase transition points of the
system, but the minimal energy gaps in the cases of periodic and open boundary conditions are
quantitatively different. When the dimerized transverse single-ion anisotropies parameter D14D2, the
ground state is lied in the non-hole systems with arbitrary lattice sites. But if D1oD2, holes will appear in
the ground state of system with odd lattice sites.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

One-dimensional spin models have been continuously attracting
much attention in both theoretical and experimental condensed-
matter physics. On the one hand, those models are among the few
exactly solvable quantum many-body systems [1–6]; on the other
hand, deviations from the pure uniform crystalline system (e.g.,
disorder or regularly varying parameters) will heavily influence the
properties of quantum spin systems [7–13], and some works
showed that the system will exhibit a series of quantum phase
transitions dependent on the dimerization strength of the crystal
fields.

Besides the dimerization effects, the choice of boundary con-
ditions might also severely affect the systems’ properties [14–18].
In fact, due to the boundary edges, the open boundary condition
(OBC) has a smaller number of joint points between the blocks
than the periodic boundary condition (PBC) (one or two points,
respectively), and the wave function loses the translational sym-
metry. Moreover, the analysis requires a set of results with
accuracy as well as parameters. If either of the above is not
fulfilled, one may no longer obtain a reliable result.

The motivation of the present work is to discuss how the
boundary conditions and parity of lattice sites affect the ground
state properties of a dimerized S¼1 Ising chain with single-ion
anisotropy. We examine how the critical behavior of quantum
many-body states at finite system size is influenced by the

boundary conditions. The ends of the chain and lattice sites L
may be treated in four different but physically reasonable ways:
(a) PBC with even L; (b) PBC with odd L: (c) OBC with even L; and
(d) OBC with odd L. We show that (i) the ground state energy is
almost the same in the above four cases; (ii) the minimal energy
gap Δ0 for exciting a fermion quasi-particle is the same in case of
OBC regardless of the parity of lattice sites, but strongly depends
on the magnitude of the dimerized transverse single-ion aniso-
tropy; (iii) the minimal energy gap Δh for exciting a hole for even
sites L system is always positive, but for odd L, when magnitude of
the dimerized transverse single-ion anisotropy D14D2, Δh is
positive but when D1oD2, Δh is negative, which means that the
system with odd L that have holes existed is more stable. As far as
we know, no previous arguments, analytic calculations, or numer-
ical studies predict the boundary effects of the dimerized spin-1
Ising chain under four boundary conditions.

The outline of this letter is as follows. In the next section, a
detailed description of the model system is presented and then,
exact diagonalization of the system under different boundary
conditions will be shown. In Section 3 the model is solved
numerically and the phase diagrams are discussed. Finally,
Section 4 is devoted to one brief conclusion.

2. The lattice model Hamiltonian

We consider a dimerized spin-1 Ising model with both long-
itudinal and transverse single-ion anisotropies with period bound-
ary conditions (PBC) and free boundary conditions (OBC). Let S

!
j

be S¼ 1 spin operators at the j-th site, satisfying the SUð2Þ algebra
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½Sai ; Sbj � ¼ iδi;jεabcS
c
i , for a; b; c¼ x; y; z, and ð S!jÞ2 ¼ SðSþ 1Þ ¼ 2. We

also consider the single-ion effects associated with each lattice
spins due to the crystal fields. So, the model Hamiltonian of a
dimerized spin-1 Ising chain with both longitudinal and transverse
single-ion anisotropies is described by

H¼ −∑
j
½JjSzj Szjþ1 þ 2Dx

j ðSxj Þ2 þ Dz
j ðSzj Þ2�: ð1Þ

The model in the uniform case with J1 ¼ J2, D1 ¼D2 was studied
in Refs. [11,19,20]. When D1 ¼ 0 and D2≠0, it can be transformed to
the model of a mixed spin-1/2 and spin-1 Ising chain [21,22].

2.1. Periodic boundary conditions

Let us first consider the periodic boundary conditions. On a
chain with L sites the Hamiltonian is given by

H¼ − ∑
L

j ¼ 1
½JjSzj Szjþ1 þ 2Dx

j ðSxj Þ2 þ Dz
j ðSzj Þ2�: ð2Þ

The periodic boundary condition is imposed as usual: SaLþj ¼ Saj .
The dimerization is imposed on both the bond couplings and the
anisotropy associated with the transverse crystal fields: J2j−1 ¼ J1,
J2j ¼ J2, D

x
2j−1 ¼D1, D

x
2j ¼D2 and Dz

2j ¼Dz
2j−1 ¼Dz for j¼ 1;2;…; L=2

with even L, or J2j−1 ¼ J1, D
x
2j−1 ¼D1, where j¼ 1;2;…; ðLþ 1Þ=2,

and J2j ¼ J2, D
x
2j ¼D2, where j¼ 1;2;…; ðL� 1Þ=2 with odd L.

At each site of the chain, the eigenvalue mj of S
z
j can take three

values of 0 and 71. Effectively, one can regard mj ¼ 0 state as a
hole and mj ¼ 71 states as the two polarized spin states of a spin-
1/2 spin operator. As done in Ref. [20], by introducing
N̂0 ¼ L−∑

j
ðSzj Þ2, one has ½N̂0;H� ¼ 0. This means that the hole states

with mj ¼ 0 are decoupled from the spin polarized states with
mj ¼ 71, it is straight forward to show that Eq. (2) is exactly
equivalent to the following Hamiltonian

H¼ − ∑
L

j ¼ 1
Jjs

z
j s

z
jþ1− ∑

L

j ¼ 1
Djs

x
j þ E0; ð3Þ

where E0 ¼ −ΣL
j ¼ 1Dj−L⋅Dz, which, to within a constant, is just the

spin-1/2 transverse Ising chain.
By the Jordan–Wigner transformation, the spin-1/2 Ising model

is mapped onto the spinless Fermion system where each term in
the Hamiltonian is of bilinear, namely,

H¼∑
i;j

c†i Ai;jcj þ
1
2
ðc†i Bi;jc

†
j þ h:c:Þ

� �
þ 1

2
TrA; ð4Þ

where, Aij ¼ −2Diδi;j−Jiδiþ1;j−Ji−1δi−1;j ¼ Aji, Bij ¼ −Jiδiþ1;j þ Ji−1δi−1;j ¼ Bji.
According to Ref. [5], we introduce the quasi-particles, defined by
ηk ¼∑jðgk;j þ hk;jÞcj=2þ ðgk;j−hk;jÞc†j =2, with a pair of real vectors gk;j,
hk;j. The Hamiltonian is diagonalized as

H¼ ΣkΛkðηþk ηk−
1
2
Þ þ E0; ð5Þ

The eigenvalue Λk and the vectors gk;j,hk;j satisfy the equations
½ηk; H�þ ¼ Λkηk, ∑igk;iððA−BÞðAþ BÞÞi;j ¼ Λ2

kgk;j, ∑ihk;iððAþ BÞðA−BÞÞi;j ¼
Λ2
khk;j. If we define ðΦkÞj ¼ gkj þ hkj and ðΨ kÞj ¼ gkj−hkj, the eigen-

value Λk can be solved by

MjiðΦkÞi ¼ Λ2
k ðΦkÞj;MjiðΨ kÞi ¼ Λ2

k ðΨ kÞj; ð6Þ
with M being a symmetric matrix defined by ðA−BÞðAþ BÞ, or
Mij ¼ ð4DiDj þ 4Ji−1Jj−1Þδij þ 4DjJi−1δi−1;j þ 4DiJj−1δi;j−1 ¼Mji, or writ-
ten explicitly for PBC,

M ¼

a1 b1 0 0 0 ⋯ b2
b1 a2 b2 0 0 ⋯ ⋯
0 b2 a1 b1 0 ⋯ ⋯
0 0 b1 a2 b2 ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ ⋯ b2 a1 b1
b2 ⋯ ⋯ ⋯ 0 b1 a2

2
6666664

3
7777775
L�L

for even L or

M ¼

a1 b1 0 0 0 ⋯ b2
b1 a2 b2 0 0 ⋯ ⋯
0 b2 a1 b1 0 ⋯ ⋯
0 0 b1 a2 b2 ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ ⋯ b1 a2 b2
b1 ⋯ ⋯ ⋯ 0 b2 a1

2
6666664

3
7777775
L�L

for odd L; ð7Þ

where a1 ¼ 4ðD2
1 þ J22Þ, a2 ¼ 4ðD2

2 þ J21Þ, b1 ¼ 4D1J1, b2 ¼ 4D2J2.
Generally, its eigenvectors gk;j or hk;j take the following Ansatz:

½1þ ð−1Þjβ�expðikÞ, β being a parameter determined by the asso-
ciated dimerization. For PBC kn ¼ 2πn=L, n¼ −L=2;−L=2þ 1;⋯; L=
2−1 for even L, and n¼ −L−1=2;−L−1=2þ 1;⋯; L−1=2−1 for odd L.
Thus, we can diagonalize Eq. (6) with this M matrix both analy-
tically and numerically to obtain the quasi-particles’ spectra.

In order to obtain the minimal hole excitation gap we also need
to consider the case where is one hole in the spin chain. We simply
assume that the hole, the mj ¼ 0 state at the j¼ L site in the
original chain, and use the same method to diagonalize this sub-
system, the diagonal form Hamiltonian with one hole can be
written as

H1ðLÞ ¼∑
~k

Λ ~k
0 ðηþ0

k η ~k
0 −

1
2
Þ þ ðDz−DLÞ þ E0: ð8Þ

Corresponding to Eq. (7) of matrix M of the none hole sector,
the matrix Mh with one hole is written as

Mh ¼

a0 b1 0 0 0 ⋯ 0
b1 a2 b2 0 0 ⋯ ⋯
0 b2 a1 b1 0 ⋯ ⋯
0 0 b1 a2 b2 ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ ⋯ b1 a2 b2
0 ⋯ ⋯ ⋯ 0 b2 a1

2
6666664

3
7777775
ðL−1Þ�ðL−1Þ

for even L or

Mh ¼

a0 b1 0 0 0 ⋯ 0
b1 a2 b2 0 0 ⋯ ⋯
0 b2 a1 b1 0 ⋯ ⋯
0 0 b1 a2 b2 ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ ⋯ b2 a1 b1
0 ⋯ ⋯ ⋯ 0 b1 a2

2
6666664

3
7777775
ðL−1Þ�ðL−1Þ

for odd L; ð9Þ

where a0 ¼ 4D2
1.

2.2. Free boundary conditions

Let us now consider the dimerized spin-1 Ising model with free
ends condition and with the Hamiltonian

H¼ − ∑
L−1

j ¼ 1
JjS

z
j S

z
jþ1− ∑

L

j ¼ 1
½2Dx

j ðSxj Þ2 þ Dz
j ðSzj Þ2�: ð10Þ

The dimerization is imposed on both the bond couplings and
the anisotropy associated with the transverse crystal fields:
J2j−1 ¼ J1, J2j ¼ J2, Dx

2j−1 ¼D1, Dx
2j ¼D2 and Dz

j ¼Dz for j¼ 1;2;…;

L=2 when L is even and J2j−1 ¼ J1, J2j ¼ J2， j¼ 1;2;…; ðL−1Þ=2，
Dx
2j−1 ¼D1， j¼ 1;2;…; ðLþ 1Þ=2， Dx

2j ¼D2， j¼ 1;2;…; ðL−1Þ=2
when L is odd.

By using the Jordan–Wigner transformation (the same process
in Section 2.1) the Hamiltonian of the system in the diagonal form
can be written as

H¼∑
k
Λkðηþk ηk−

1
2
Þ− ∑

L

j ¼ 1
ðDx

j þ Dz
j Þ: ð11Þ
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