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Abstract This paper presents a decoupled control strategy using time-varying sliding surface-based

sliding-mode controller for speed control of permanent magnet synchronous motor (PMSM). The

decoupled method provides a simple way to achieve asymptotic stability for a PMSM by dividing

the system into two subsystems electrical and mechanical systems. The simulation results for

PMSM are presented to demonstrate the effectiveness and robustness of the method. Comparing

this controller with pulse width modulation (PWM) controller for the same motor.
� 2011 Ain Shams University. Production and hosting by Elsevier B.V.
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1. Introduction

In recent years, sliding-mode control (SMC) has been sug-

gested as an approach for the control of systems with nonlin-
earities, uncertain dynamics and bounded input disturbances.

The most distinguished features of the SMC technique are:
(i) insensitivity to parameter variations, (ii) external distur-
bance rejection and (iii) fast dynamic responses. However,
there is undesirable chattering in the control effort and bounds

on the uncertainties required in the design of the SMC. The
uncertainties usually include unmodel dynamics, parameter
variations and external disturbances [1–4]. If the actual bounds

of the uncertainties exceed the assumed values designed in the
controller, stability of the system is not guaranteed.

Like other conventional control structures [5–7], the design

of sliding-mode controllers needs the knowledge of the mathe-
matical model of the plant, which decreases the performance in
some applications where the mathematical modeling of the sys-
tem is very hard and where the system has a large range of

parameter variation together with unexpected and sudden
external disturbances [8–11].

In this paper, a decoupled sliding-mode control (DSMC)

design strategy is used to control the speed of PMSM. The
motor system is divided into two subsystems with different
switching surfaces to achieve the desired speed.
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2. PMSM mathematical model

PMSM drives are becoming more popular and replace classical

motors in industrial applications, machine tools and residen-
tial applications. In a PMSM the excitation is provided by
means of using permanent magnets mounted on the rotor.
PMSMs present numerous advantages like high efficiency,

high torque to inertia ratio, high power density, reliability
and long life.

For control unit design the synchronous motor is modeled

in rotating rotor coordinates {d, q}. Unlike in stator coordi-
nates {a, b, c}, where the signals have to be modulated on sine
waves in order to propel the machine, the waveform of all vari-

ables in rotor coordinates is unconstrained and the modulation
is carried out implicitly during transformation from rotor to
stator coordinate.

Eq. (1) shows the transformation matrix between 3 phase
currents (Iabc) and dq-courrents (Idq):
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The PMSM model is given by the following differential

equations as [12]:

_Lid ¼ �Rid þ pxLqiq þ ud
_Liq ¼ �Riq � pxLdid � kpxþ uq

Te ¼ 1:5p½kiq þ ðLd � LqÞidiq�
J _x ¼ Te � lx� TL

_h ¼ x;

ð2Þ

where ud, uq: the rotor voltages in {d, q} coordinates (V); id, iq:
rotor currents in {d, q} coordinates (A); h: the electrical rotor
position (rad); x: the angular velocity of the motor shaft in

electrical (rad/s); Rd, Rq: the winding resistance of d and q axis
(X); Ld, Lq: the inductance of d and q axis (H), k: rotor magnet
flux linkage (Wb); J: the rotor and shaft inertia (kg m2); l: the
coefficient of friction (N.m.s); p: the number of permanent
magnet pole pairs; TL: the disturbing external torque (N.m)
and Te: the motor torque (N.m).

For Ld = Lq = L then the motor torque will be

Te ¼ 1:5pkiq ¼ Kiq; ð3Þ

where k is the motor torque constant.

Substitution in Eq. (2), so the model can be written as:

_Lid ¼ �Rid þ pxLiq þ ud
_Liq ¼ �Riq � pxLid � 2

3
kxþ uq

J _x ¼ Te � lx� TL

_h ¼ x:

ð4Þ

3. Motor model in state space equations

Let

x1 ¼ id

x2 ¼ iq

x3 ¼ x;

ð5Þ

then the model can be written as

_x1 ¼ � R
Ld
x1 þ px3x2 þ 1

Ld
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Tl;

ð6Þ

so the model can be written as :
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From Eqs. (6) and (7), it is obvious that the dynamic model
of PMSM is highly nonlinear because of the coupling between
the speed and the electrical currents, in addition to the satura-

tion effect of the magnetic circuit and the existing viscous
friction.

The PMSM parameters are: 1.1 KW, 3000 RPM, R=

2.875 X, Ld = Lq = 8.5 mH, P = 4 pair of poles (8 poles),
J= 0.8 · 10�3 kg m2, l = 1 N.m.s.

4. Sliding mode control and decoupling

There is currently a large interest in sliding mode control algo-

rithms due to their robustness properties and possibilities to
decouple a high dimensional design problem into a set of lower
dimensional independent sub-problems.

The switching surface: Consider a general type of system

represented by the state equation,

_x ¼ fðx; u; tÞ: ð8Þ

The control u(x, t) with its respective entry ui(x, t) has the
form

uiðx; tÞ ¼
uþi ðx; tÞ if siðxÞ > 0

u�i ðx; tÞ if siðxÞ < 0

�
; ð9Þ

where uþi ðx; tÞ, u�i ðx; tÞ and siðxÞ are continuous functions.

siðxÞ is an (n � 1) dimensional switching function. Since ui(x, t)
undergoes discontinuity on the surface siðxÞ ¼ 0; siðxÞ ¼ 0 is
called a switching surface or switching hyperplane as in Fig. 1.

Figure 1 The sliding surface (S).
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