Contents lists available at SciVerse ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Mössbauer and X-ray diffraction study of $\text{Co}^{2+}-\text{Si}^{4+}$ substituted M-type barium hexaferrite BaFe_{12-2x}Co_xSi_xO_{19 ± γ}

E.D. Solovyova^{a,*}, E.V. Pashkova^a, V.P. Ivanitski^{b,1}, O.I. V'yunov^a, A.G. Belous^a

^a V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142 03680, Ukraine ^b Institute of Geochemistry, Mineralogy and Ore Formation, 34 Prospect Palladina, Kyiv-164 03680, Ukraine

ARTICLE INFO

ABSTRACT

Article history: Received 23 April 2012 Received in revised form 7 September 2012 Available online 30 October 2012

Keywords: Barium hexaferrite Non-crystalline material Precipitation Mössbauer spectroscopy Magnetic structure

1. Introduction

Barium hexaferrite with magnetoplumbite structure M-type BHF is a hard magnetic material. It is characterized by high values of coercivity (H_c) and remanent magnetization (B_r) due to a strong uniaxial magnetocrystalline anisotropy [1,2]. Barium hexaferrite is widely used as a material for new permanent magnets [1-3], high-density data recording and storage systems [4,5], MW devices [6], electromagnetic energy absorbers in the highfrequency range [7–9], or biomedical hyperthermia inductors [10,11]. The requirements for the values of coercivity (H_c) depend on the application of BHF. Characteristic values of coercivity for permanent magnets are 480-640 kA/m and more, for magnetic recording 200-280 kA/m and for biomedical applications as low as possible. The value of the magnetization (M_s) must be high independent of application. Therefore, the preparation of BHF with high M_s and controlled H_c is a problem of today. In recent years, this problem is solved by heterovalent substitution of Fe³⁺ according to the scheme $2Fe^{3+} \rightarrow Me^{2+} + Me^{4+}$, where Me^{2+} and Me⁴⁺ are ferromagnetic and nonmagnetic ions respectively [12-19]. Such substitution ensures electrical neutrality in the BHF structure. The substitution $2Fe^{3+} \rightarrow Co^{2+} + Ti^{4+}$ is the most studied [12–18]. It is favorable for smooth decrease in H_c with increasing degree of substitution. Depending on the nature of

E-mail addresses: solovyovak@mail.ru (E.D. Solovyova),

pashelena@ukr.net (E.V. Pashkova), vyunov@ionc.kiev.ua (O.I. V'yunov), belous@ionc.kiev.ua (A.G. Belous).

¹ Tel.: +380 44 424 1570; fax: +380 44 424 1211.

Using X-ray powder diffractions, Mössbauer spectroscopy, and magnetic measurements, the effect of dopants ($Co^{2+}+Si^{4+}$) on the fine structure and magnetic properties of M-type barium hexaferrite prepared by hydroxide and carbonate precipitations has been studied. It has been shown that the magnetic properties of M-type barium hexaferrite can be controlled by heterovalent substitution $2Fe^{3+} \rightarrow Co^{2+}+Si^{4+}$.

© 2012 Elsevier B.V. All rights reserved.

dopants, the magnetization (M_s) of BHF can be unchanged [14], slightly decreased [12], or increased [17].

It is known [1,2,19] that the magnetization of BHF is determined by antiferromagnetic ordering of magnetic ions Fe^{3+} . The distribution of ferromagnetic cations over nonequivalent positions in the M-type BHF structure also affects the magnetization [2,20]. The distribution of cations in ferrites depends on the synthesis conditions and the of dopants nature [1,2,20]. In this work, ($\text{Co}^{2+} + \text{Si}^{4+}$) ions were chosen as dopants.

It is known that silica (SiO_2) can be used as an inorganic matrix to prepare glass ceramics based on BHF [21,22] and as a material for encapsulating magnetic particles of BHF [23]. However, the effect of substitution of Si⁴⁺ ions for Fe³⁺ ions is scantily studied [24].

The aim of this work is the investigation of the effect of heterovalent substitution of $(Co^{2+}+Si^{4+})$ ions for Fe³⁺ ions on the crystal structure and magnetic properties of M-type barium hexaferrite.

2. Experimental methods

High purity $Ba(NO_3)_2$, $Fe(NO_3)_3$, $Co(NO_3)_2$ and $(C_2H_5O)_4Si$ were used as initial reagents. The starting hydroxide–carbonate precipitates were obtained by two-step precipitation. The ingredients were precipitated at constant pH. pH was monitored with an I-160 MI ionometer and controlled with a BAT-15 automatic titration unit.

In the first step of precipitation, hydroxides of Fe(III) and Si(IV) were co-precipitated with a water solution of ammonia at pH=4.3. Precipitates were washed in distilled water to remove NH_4^+ ions. In the second step of precipitation, Co(II) and Ba(II) carbonates were co-precipitated with a solution of sodium

^{*} Corresponding author. Tel./fax: +380 44 424 22 11.

^{0304-8853/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jmmm.2012.10.035

carbonate at pH=9. The resulting precipitates were washed free from the mother solution using distilled water until no NO₃⁻ and Cl⁻ ions in the washed solution were detected. Powders were dried at 353 K and heat-treated at 1273 K for 2 h.

The samples were characterized by X-ray diffractometry (XRD) using a DRON-3M diffractometer (CuK α radiation, exposure at each point 10 s). SiO₂ (2 θ standard) and certified intensity standard Al₂O₃ [25] were used as external standards. For X-ray phase analysis, a JCPDS database was used. The crystal structure parameters were refined by X-ray full-profile analysis.

The size of BHF particle (nm) was estimated from the broadening of the X-ray reflections 110 and 220. BHF calcined at 1773 K for 5 h was used as a standard. The diffraction peak broadening β was calculated from the formula: $\beta = \sqrt{B^2 - b^2}$, where *B* is the total linear broadening of the line, and *b* is instrumental broadening. The particle size was calculated from the Scherrer formula $D = 0.9\lambda/\beta_{hkl}\cos(\theta_{hkl})$ [3].

The Mössbauer spectra (MSs) were recorded at room temperature with a spectrometer working in the mode of constant accelerations with the use of 57 Co in Cr matrix. The speed scale was calibrated using α -Fe lines. MSs were fitted by the leastsquare method using Univem-2 software [26].

The magnetic properties of BHF powders were measured in the range of magnetic fields H=0-800 kA/m at room temperature with a ballistic magnetometer.

3. Results and discussion

XRD shows that in the range x=0-0.3 BaFe₁₂₋₂ $_x$ Co_xSi_xO_{19+ γ} samples are single-phase ones and have a hexagonal M-type magnetoplumbite structure (space group $P6_3/mmc$). In addition to M-type BHF phase, a BaFe₁₈O₂₇ phase with hexagonal W-type structure also appears at x > 0.3 (Fig. 1). Fig. 2 shows the concentration dependence of the unit cell parameters of M-type BHF. The decrease in V of doped M-type BHF in the homogeneity region (x=0-0.3) on the substitution of $Fe_{CN=6,HS}^{3+}$ ions (r=0.645 Å) [27] by Co²⁺ and Si⁴⁺ ions $(rCo_{CN6}^{2+}=0.735 \text{ Å},$ $rSi_{CN6}^{4+}=0.400$ Å, $\check{r}=0.567$ Å) obeys the Vegard rule. This indicates the formation of substitutional solid solutions [28]. The increase in V for x > 0.3 may be due to increase in the ratio Ba^{2+}/Fe^{3+} content ($rBa_{CN8}^{2+}=1.420$ Å, $rFe_{CN6}^{3+}=0.645$ Å) in M-type BHF compared with nominal composition (1/12 - 2x) due to the formation of the second phase, BaFe₁₈O₂₇. It is known that solid solution has M-type BHF structure in the range Ba/Fe = 1/12 - 1/8 [29-33].

The concentration dependence of the unit cell parameters of BHF is of a complex character (Fig. 2b) due to the complexity of its crystal structure.

Fig. 1. Diffractograms of $BaFe_{12-2x}Co_xSi_xO_{19 \pm \gamma}$ samples calcined at 1273 K.

Fig. 2. Concentration dependence of the unit cell volume (a) and parameters (b) of $BaFe_{12-2x}Co_xSi_xO_{19\pm\gamma}$ samples calcined at 1273 K.

Fig. 3. Crystal (a) and magnetic (b) structures M-type BaFe₁₂O₁₉.

Fig. 3 shows crystal and magnetic structures M-type $BaFe_{12}O_{19}$ [34]. The structure of M-type BHF consists of spinel blocks *S*, *S*^{*} and hexagonal barium-containing blocks *R*, *R*^{*}, alternating in the direction of the *c* axis. *S*^{*} and *R*^{*} blocks result from rotation of *S* and *R* blocks by 180° about the *c* axis. The unit cell of BHF contains 10 layers of O^{2-} ions (Fig. 3). There are five Download English Version:

https://daneshyari.com/en/article/8158976

Download Persian Version:

https://daneshyari.com/article/8158976

Daneshyari.com