Contents lists available at [SciVerse ScienceDirect](www.elsevier.com/locate/jmmm)

Journal of Magnetism and Magnetic Materials

journal homepage: <www.elsevier.com/locate/jmmm>

Mössbauer and X-ray diffraction study of $Co^{2+}-Si^{4+}$ substituted M-type barium hexaferrite BaFe $_{12-2}$ xCo $_{\mathrm{x}}$ Si $_{\mathrm{x}}$ O $_{19\,\pm\,\gamma}$

E.D. Solovyova ^{a,}*, E.V. Pashkova ^a, V.P. Ivanitski ^{b,1}, O.I. V′yunov ^a, A.G. Belous ^a

^a V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142 03680, Ukraine b Institute of Geochemistry, Mineralogy and Ore Formation, 34 Prospect Palladina, Kyiv-164 03680, Ukraine

article info

ABSTRACT

 $2Fe^{3+} \rightarrow Co^{2+} + Si^{4+}$.

Article history: Received 23 April 2012 Received in revised form 7 September 2012 Available online 30 October 2012

Keywords: Barium hexaferrite Non-crystalline material Precipitation Mössbauer spectroscopy Magnetic structure

1. Introduction

Barium hexaferrite with magnetoplumbite structure M-type BHF is a hard magnetic material. It is characterized by high values of coercivity (H_c) and remanent magnetization (B_r) due to a strong uniaxial magnetocrystalline anisotropy [\[1,2](#page--1-0)]. Barium hexaferrite is widely used as a material for new permanent magnets [\[1–3\]](#page--1-0), high-density data recording and storage systems [\[4,5\]](#page--1-0), MW devices [\[6\]](#page--1-0), electromagnetic energy absorbers in the highfrequency range [\[7–9\]](#page--1-0), or biomedical hyperthermia inductors [\[10,11\]](#page--1-0). The requirements for the values of coercivity (H_c) depend on the application of BHF. Characteristic values of coercivity for permanent magnets are 480–640 kA/m and more, for magnetic recording 200–280 kA/m and for biomedical applications as low as possible. The value of the magnetization (M_s) must be high independent of application. Therefore, the preparation of BHF with high M_s and controlled H_c is a problem of today. In recent years, this problem is solved by heterovalent substitution of $Fe³⁺$ according to the scheme $2Fe^{3+} \rightarrow Me^{2+} + Me^{4+}$, where Me²⁺ and Me^{4+} are ferromagnetic and nonmagnetic ions respectively [\[12–19\]](#page--1-0). Such substitution ensures electrical neutrality in the BHF structure. The substitution $2Fe^{3+} \rightarrow Co^{2+} + Ti^{4+}$ is the most studied [\[12–18\]](#page--1-0). It is favorable for smooth decrease in H_c with increasing degree of substitution. Depending on the nature of

E-mail addresses: solovyovak@mail.ru (E.D. Solovyova),

[pashelena@ukr.net \(E.V. Pashkova\),](mailto:pashelena@ukr.net) [vyunov@ionc.kiev.ua \(O.I. V](mailto:vyunov@ionc.kiev.ua)'[yunov\)](mailto:vyunov@ionc.kiev.ua), [belous@ionc.kiev.ua \(A.G. Belous\).](mailto:belous@ionc.kiev.ua)

 1 Tel.: +380 44 424 1570; fax: +380 44 424 1211.

dopants, the magnetization (M_s) of BHF can be unchanged [\[14\],](#page--1-0) slightly decreased [\[12\]](#page--1-0), or increased [\[17\].](#page--1-0)

 $@$ 2012 Elsevier B.V. All rights reserved.

Using X-ray powder diffractions, Mössbauer spectroscopy, and magnetic measurements, the effect of dopants ($Co^{2+}+Si^{4+}$) on the fine structure and magnetic properties of M-type barium hexaferrite prepared by hydroxide and carbonate precipitations has been studied. It has been shown that the magnetic properties of M-type barium hexaferrite can be controlled by heterovalent substitution

> It is known [\[1,2,19\]](#page--1-0) that the magnetization of BHF is determined by antiferromagnetic ordering of magnetic ions $Fe³⁺$. The distribution of ferromagnetic cations over nonequivalent positions in the M-type BHF structure also affects the magnetization [\[2,20\]](#page--1-0). The distribution of cations in ferrites depends on the synthesis conditions and the of dopants nature [\[1,2,20\]](#page--1-0). In this work, $(Co^{2+} + Si^{4+})$ ions were chosen as dopants.

> It is known that silica $(SiO₂)$ can be used as an inorganic matrix to prepare glass ceramics based on BHF [\[21,22](#page--1-0)] and as a material for encapsulating magnetic particles of BHF [\[23\].](#page--1-0) However, the effect of substitution of Si^{4+} ions for Fe³⁺ ions is scantily studied [\[24\]](#page--1-0).

> The aim of this work is the investigation of the effect of heterovalent substitution of $(Co^{2+}+Si^{4+})$ ions for Fe³⁺ ions on the crystal structure and magnetic properties of M-type barium hexaferrite.

2. Experimental methods

High purity Ba($NO₃$)₂, Fe($NO₃$)₃, Co($NO₃$)₂ and ($C₂H₅O$)₄Si were used as initial reagents. The starting hydroxide–carbonate precipitates were obtained by two-step precipitation. The ingredients were precipitated at constant pH. pH was monitored with an I-160 MI ionometer and controlled with a BAT-15 automatic titration unit.

In the first step of precipitation, hydroxides of Fe(III) and Si(IV) were co-precipitated with a water solution of ammonia at $pH = 4.3$. Precipitates were washed in distilled water to remove $NH₄⁺$ ions. In the second step of precipitation, Co(II) and Ba(II) carbonates were co-precipitated with a solution of sodium

 $*$ Corresponding author. Tel./fax: $+380 44 424 22 11$.

^{0304-8853/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. [http://dx.doi.org/10.1016/j.jmmm.2012.10.035](dx.doi.org/10.1016/j.jmmm.2012.10.035)

carbonate at $pH = 9$. The resulting precipitates were washed free from the mother solution using distilled water until no NO_3^- and Cl^- ions in the washed solution were detected. Powders were dried at 353 K and heat-treated at 1273 K for 2 h.

The samples were characterized by X-ray diffractometry (XRD) using a DRON-3M diffractometer (CuKa radiation, exposure at each point 10 s). SiO₂ (2 θ standard) and certified intensity standard Al_2O_3 [\[25\]](#page--1-0) were used as external standards. For X-ray phase analysis, a JCPDS database was used. The crystal structure parameters were refined by X-ray full-profile analysis.

The size of BHF particle (nm) was estimated from the broadening of the X-ray reflections 110 and 220. BHF calcined at 1773 K for 5 h was used as a standard. The diffraction peak broadening β for 5 if was used as a standard. The diff<u>raction</u> peak broadening p
was calculated from the formula: $\beta = \sqrt{B^2-b^2}$, where B is the total linear broadening of the line, and b is instrumental broadening. The particle size was calculated from the Scherrer formula $D = 0.9\lambda/\beta_{hkl} \cos(\theta_{hkl})$ [\[3\]](#page--1-0).

The Mössbauer spectra (MSs) were recorded at room temperature with a spectrometer working in the mode of constant accelerations with the use of 57 Co in Cr matrix. The speed scale was calibrated using α -Fe lines. MSs were fitted by the leastsquare method using Univem-2 software [\[26\]](#page--1-0).

The magnetic properties of BHF powders were measured in the range of magnetic fields $H=0-800$ kA/m at room temperature with a ballistic magnetometer.

3. Results and discussion

XRD shows that in the range $x=0-0.3$ BaFe_{12–2} $_{x}Co_{x}Si_{x}O_{19+y}$ samples are single-phase ones and have a hexagonal M-type magnetoplumbite structure (space group $P6₃/mmc$). In addition to M-type BHF phase, a BaFe₁₈O₂₇ phase with hexagonal W-type structure also appears at $x>0.3$ (Fig. 1). Fig. 2 shows the concentration dependence of the unit cell parameters of M-type BHF. The decrease in V of doped M-type BHF in the homogeneity region ($x=0$ -0.3) on the substitution of Fe ${}^{3+}_{CN=6,HS}$ ions $(r=0.645 \text{ Å})$ [\[27\]](#page--1-0) by Co²⁺ and Si⁴⁺ ions ($rCo_{CNG}^{2+}=0.735 \text{ Å}$, rSi $^{4+}_{\rm CNG}$ =0.400 Å, ř= 0.567 Å) obeys the Vegard rule. This indicates the formation of substitutional solid solutions [\[28\]](#page--1-0). The increase in V for $x>0.3$ may be due to increase in the ratio Ba²⁺/Fe³⁺ content (rBa $^{2+}_{\rm CN8}$ =1.420 Å, rFe $^{3+}_{\rm CN6}$ =0.645 Å) in M-type BHF compared with nominal composition $(1/12-2x)$ due to the formation of the second phase, BaFe₁₈O₂₇. It is known that solid solution has M-type BHF structure in the range Ba/Fe $=$ 1/12 $-$ 1/8 [\[29–33\]](#page--1-0).

The concentration dependence of the unit cell parameters of BHF is of a complex character (Fig. 2b) due to the complexity of its crystal structure.

Fig. 2. Concentration dependence of the unit cell volume (a) and parameters (b) of BaFe_{12–2x}Co_xSi_xO_{19 ± γ} samples calcined at 1273 K.

Fig. 3. Crystal (a) and magnetic (b) structures M-type BaFe₁₂O₁₉.

Fig. 3 shows crystal and magnetic structures M-type BaFe $_{12}O_{19}$ [\[34\]](#page--1-0). The structure of M-type BHF consists of spinel blocks S, S^* and hexagonal barium-containing blocks R , R^* , alternating in the direction of the c axis. S^* and R^* blocks result from rotation of S and R blocks by 180 $^{\circ}$ about the c axis. The unit cell of **Fig. 1.** Diffractograms of BaFe_{12–2x}Co_xSi_xO_{19±7} samples calcined at 1273 K. BHF contains 10 layers of O²⁻ ions (Fig. 3). There are five

Download English Version:

<https://daneshyari.com/en/article/8158976>

Download Persian Version:

<https://daneshyari.com/article/8158976>

[Daneshyari.com](https://daneshyari.com)