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In this work we present a detailed study on the elastic and magnetoelastic contributions for thin films
and bulk materials with hexagonal and cubic crystalline structures. In contrast to bulk materials, the
effective elastic anisotropy for thin films shows a strong dependence on the epitaxial order of the film
on the substrate and the stress-free condition of the out-of-plane strain. The contributions of the elastic
and magnetoelastic energies in the effective magnetic anisotropy of films with cubic or hexagonal
lattice are obtained for certain epitaxial growth directions.
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1. Introduction

Ferromagnetic materials are intrinsically magnetostrictive,
developing a mechanical deformation when subjected to an
external magnetic field (see Fig. 1). This phenomenon comes from
a reorientation of the magnetization direction in the material
exposed to a magnetic field, leading to a field-induced strain. In a
given structure, the atoms are in an equilibrium position and the
elastic energy is responsible for a stable equilibrium of atomistic
positions with magnetization assuming a preferential direction.

In ferromagnetic thin films have been reported that elastic and
magnetoelastic contributions differ substantially from the respec-
tive bulk properties [1]. Magnitude and sign of magnetoelastic
coupling constants can deviate from their respective bulk value
mainly in the case of ultrathin and strained ferromagnetic films.
The preferential magnetization orientation can also be influenced
by the lattice deformation. Since first-order magnetoelastic effects
in strain are well-known for several crystalline structures [2,3],
elastic constants, magnetoelastic couplings and strains are appro-
priate parameters to model the influence of stress in the magne-
tization process.

Even today, an accurate numerical solution for three- and two-
dimensional elastostatics and magneto-elastostatic of films is
often impractical and sometime infeasible. Magneto-elastic dis-
placements depend on the spin-orbit interaction and can locally
differ from the rigid body displacements, making necessary use of
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the finite strain tensors with compatibility conditions to leave the
body without unphysical gaps or overlaps after a deformation.
Therefore, both first-principles calculations and finite element
methods become complicated approximations for our purpose of
analyses, it is sufficient to apply appropriate boundary conditions
to differentiate bulk and thin films. For our purpose of analyses, it
is sufficient to apply appropriate boundary conditions to differ-
entiate bulk and thin films. Whereas bulk is free to deform in all
directions, thin films are considered homogeneous and linearly
elastic slabs bounded by two flat faces, one is free to deform and
the other is clamped on a substrate.

Elastic and magnetoelastic effects are treated assuming that
free energy should be expressed as a function of the external
magnetic field and temperature so that the derivative with
respect to magnetic field gives the magnetization at constant
temperature. In these procedures, is admitted that volume and
number of magnetic moments are constants.

In the early work of Kittel [2,4-7] it was shown that the effect
of a tetragonal deformation in cubic bulk materials leads to a
correction in the free magnetic energy density. In general, first-
and second-order magnetoelastic terms, i.e., terms that scale to o?
and of, are used in the free magnetic energy to describe the
magnetic behavior of thin films [3,4,8-13]. The origin of these
terms, however, remains unclear. The current work provides
expressions for those terms depending on the epitaxial order,
showing that magnetoelastic effects in thin films are a very
complicated issue and their effects in the magnetic anisotropy
are captious.

In this work we analyze the effects of unit cell distortion in the
magnetic anisotropy as thin films are constrained to the sub-
strate. In this case, additional non-linear terms are obtained in the
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Fig. 1. Magnetomechanical behavior of a magnetostrictive material, which can be
stretched (left part) or shrinked (right part) under an applied field.

total magnetic anisotropy, leading to elastic free energy density
for thin-films substantially different from those obtained for bulk.
Moreover, such magnetic anisotropy constants depend strongly
on the epitaxial relation of the film on the substrate.

2. Magnetoelastic and elastic contributions

Magnetoelastic energy and its corresponding magnetoelastic
coupling constant take into account the interaction between
the magnetization and lattice deformation due to strain [2].
The magnetoelastic energy is defined zero for an unstrained
lattice. Magnetostrictive energy is due to deformation of a sample
due to magnetic interactions and can be spontaneous when
originated from internal magnetic interaction or forced when
created by magnetic interaction between the sample and an
externally applied magnetic field. Consequently, magnetic and
elastic properties in ferromagnetic materials depend on each
other and there is a strong influence of crystalline structure and
lattice deformation in the magnetization process and elastic
properties.

The application of a mechanical stress to magnetic material
changes its magnetic properties. Such changes are visible in the
magnetization curve and make the magnetic induction different
for a given magnetic field at different applied stresses. These
changes are due mainly to two mechanisms. One is due to the
magnetoelastic energy, which modifies the anisotropy of the
material and the other is due to a change in the interatomic
distances and symmetry lowering.

In most of the models of magnetostriction and magnetoelastic
coupling, the energy is separated into magnetic energy and elastic
energy, with the sum of which is considered as the magnetoelas-
tic energy of the coupled system.

In bulk, it is commonly assumed that magnetoelastic and
magnetostrictive coefficients of the magnetic material do not
change with strain. However, in thin films these coefficients can
be assumed to be linearly dependent on the stress values or strain
by considering that Hook’s law is valid.

The magnetomechanical effects in magnetic materials are
useful phenomena as it is used in actuators, transducers and
devices, but this same phenomena becomes parasitic when it is
considered source of the noise and vibrations in transformers,
inductors and magnetic sensors.

Next, elastic and magnetoelastic energies contributions to free
energy for magnetic materials with cubic and hexagonal crystal-
line structures are revised and further implemented in the
treatment of magnetic thin films constrained to substrates.

2.1. Hexagonal crystals

The elastic free energy density for a crystal with hexagonal
structure, Fi, is given by [14]

H 2, .2
Fy=1ci1(e + )+ a6 +cne(6a +6)

+1 3363 +1 cun(€f +€d) +3(c11—C12)éd (1)

and the magnetoelastic free energy density, i, is [15]
F, =By (02 ¢1 + 036 +0100266) —Bo03 3
—B303(€1 +€2) +Ba(02013¢4 + 01 01365). 2)

Here a4, 05, and o3 are the direction cosines with respect to the
c-axis of the hexagonal lattice, ¢; represents the strain in Voigt’s
notation, ¢; and B; denote the elastic and magnetoelastic coupling
constants, respectively. It is noteworthy that in Egs. (1) and (2)
second-order strains have not been taken into account, which
might also play a role.

2.2. Cubic crystals

According to Kittel [2,1,3] for a crystal with cubic structure, the
elastic, F5, and the magnetoelastic, FS,, free energy densities are,
respectively, given by:

C 2 2 2 2 2 2
Fel = % C]](C1 +6 +C3)+%C44(C4+C5 +CG)+C]2(6162 + €263+ €1€3),

3)

FS o =Bi(03c1 +0365 4 03 ¢3) + Ba(010p €6 + 02 0l3€4 + 01301 €5). 4)

In the above equations we omitted higher-order terms in the
strain, which might also play a role.

Next, we discuss how is the procedure to evaluate the effective
elastic anisotropy for bulk materials and thin films with cubic and
hexagonal crystalline structures. It is properly done regarding the
epitaxial relations of the films on the substrates and considering
the orthogonal crystal coordinate system in which the elastic
constants c; are well defined.

3. Thin films under constraints

On the contrary to bulk materials, which are free to deform
under action of a magnetic external field, thin films are clamped
on the substrates. Therefore, ferromagnetic thin films are not free
to deform under magnetostrictive forces. A magnetostrictive
stress is induced along the substrate plane. As a consequence,
the strains belonging to the film plane are fixed, while the out-of-
plane strains are free to deform.

A word of caution is that all strains are not constant during the
magnetization process. Consequently, they always search for an
equilibrium position to minimize the total energy. Let the in-
plane strains be ¢4, ¢; and ¢g, while ¢3, ¢4 and ¢5 are the out-of-
plane strains [16]. So, the previous discussion is equivalent to:

(1) o;=0F/o¢;, i=1,2,6.
(I) 8F/0¢; =0, i=3,4,5.

Here F is the total free energy density, ¢; is the strain in Voigt’s
notation and g; is the field-induced stress.

To correctly take into account the energy due to lattice
distortion, we consider that the in-plane strains are constant
while the out-of-plane strain are free to relax and distort the
lattice, minimizing the energy, and contributing to the effective
anisotropy. In this case, the contributions to the in-plane strains
may arise from growth conditions, thermal expansion, and
eventually structural phase transition.

It is also noteworthy that the effective elastic anisotropy
should be calculated by regarding properly the epitaxial relation
of the film on the substrate. It should be properly adjusted to the
orthogonal crystal coordinate system in which the elastic con-
stants ¢; are well defined [1,17]. The coordinates are already
properly adjusted in the case of hexagonal crystals with 0001-
orientation and cubic crystals with 100-orientation (both body-
centered cubic and face-centered cubic elements). However, it is
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