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a b s t r a c t

We study, using a self-consistent harmonic approximation, the quasi-two-dimensional frustrated

Heisenberg antiferromagnet with easy-plane single ion anisotropy. Besides the transition temperature

from the high-temperature paramagnetic phase to the low-temperature ordered phase, we also obtain,

at zero temperature, the critical single ion anisotropy parameter Dc that separates the low D region

from the large D quantum paramagnetic phase. We have found disordered phases at zero temperature

that could be possible candidates for spin liquids states.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Frustrated quantum antiferromagnets on the square lattice
have been the subject of intense research over the last decades,
with particular interest in the spin S¼1/2 case relevant for the
cuprates, whereas interest in higher spin values increased with
the discovery of the pnicitides [1]. As by now it is well known that
the antiferromagnetic Heisenberg model on the square lattice has
long-range order in the ground state even for S¼1/2. It is also
known that this long range order can be destroyed by frustration
caused, for instance, by next nearest neighbor antiferromagnetic
interactions [2–10].

On the other side, spin liquid is a hot topic in condensed
matter physics since the discovery of high-TC superconductivity.
A spin liquid is a disordered state, but not all disordered states are
a spin liquid [4]. So, a first step in the research of spin liquids is to
look for disordered states. In this context, the antiferromagnetic
Heisenberg model (AFHM) with competing interactions has been
widely studied, but the same is not true for the XY model.

Several new magnetic materials characterized by competing
interactions have been synthesized, but a detailed theoretical
understanding of the ground state properties of simple models
displaying both frustration and quantum fluctuations is still
missing [11], and interpretations of the experimental results
often relies on simple perturbative or semiclassical methods.

When J2/J1o1/2, where J1 is the nearest-neighbor and J2 the
next-nearest neighbor interaction, the classical ground state has a
Néel order. However when J2/J141/2, the ground state consists of

two independent sublattices with antiferromagnetic order. The
classical ground state energy does not depend on the relative
orientations of both sublattices. However, quantum fluctuations
lift this degeneracy and select a collinear order state, where the
neighboring spins align ferromagnetically along one axis of the
square lattice and antiferromagnetically along the other [3,4].

Additional terms, as for instance single ion anisotropy, are
possible when S41/2 and can lead to new physical features, such
as a quantum phase transition to a large D phase. Study of these
models are not only of an academic interest since materials with
S¼1 and single ion anisotropy have been synthesized recently [12].
The system is more complex as there are now two mechanisms by
which we can vary the quantum fluctuations and get disordered
phases. One mechanism is the anisotropy; the other is the compet-
ing interactions to the bare model where we can vary the relative
strengths of the exchange interactions. The combined effect of
competing interactions J1, J2 and J3 and single ion anisotropy may
lead (or not lead) to frustrations, depending on their mutual values.
In real magnetic material, single-ion anisotropy plays a major role in
determining the magnetic behavior of the system [12,13].

In this paper we will study a quasi-two-dimensional Heisen-
berg antiferromagnet with an easy-plane single ion anisotropy
described by the following Hamiltonian:

H¼
J1

2

X
r,a

ðSx
r Sx

rþaþSy
r Sy

rþaþlSz
rSz

rþaÞþD
X

r

ðSz
rÞ

2

þ
J2

2

X
r,d

ðSx
r Sx

rþdþSy
r Sy

rþdþlSz
rSz

rþdÞ

þ
J3

2

X
r,d

ðSx
r Sx

rþdþSy
r Sy

rþdþlSz
rSz

rþdÞ: ð1Þ

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jmmm

Journal of Magnetism and Magnetic Materials

0304-8853/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jmmm.2012.09.006

n Corresponding author. Tel.: þ55 31 3409 6624.

E-mail address: antpires@fisica.ufmg.br (A.S.T. Pires).

Journal of Magnetism and Magnetic Materials 327 (2013) 1–6

www.elsevier.com/locate/jmmm
www.elsevier.com/locate/jmmm
dx.doi.org/10.1016/j.jmmm.2012.09.006
dx.doi.org/10.1016/j.jmmm.2012.09.006
dx.doi.org/10.1016/j.jmmm.2012.09.006
mailto:antpires@fisica.ufmg.br
dx.doi.org/10.1016/j.jmmm.2012.09.006


Here J1 is the nearest-neighbor, J2 the next-nearest neighbor
exchanges interactions, both in the XY-plane, and J3 the inter-
plane coupling. We take S¼1, but our calculations can be applied
for any S41/2. The main physical motivation for our study is to
find phases which do not carry a magnetic moment, and therefore
are candidate for a spin liquid state.

The spectrum of the Hamiltonian (1) changes drastically as D

varies from very small to very large values. A strong anisotropy
favors a quantum paramagnetic ground state, which is separated
from the ordered state by a quantum critical point. This phase
consists of a unique ground state with total magnetization
Sz

total ¼ 0, separated by a gap from the first excited states, which
lie in the sectors Sz

total ¼ 71. The primary excitations is a gaped
S¼1 exciton with an infinite lifetime at low energies.

As it is well known, the isotropic 2D AFHM is ordered only at
zero temperatures, while in the XY model a Kosterlitz–Thouless
(KT) phase transition occurs when J3¼0, resulting from the
unbinding of vortex–antivortex pairs. Therefore it is interesting
to calculate the KT transition temperature TKT for the XY model
with competing interactions. For J3¼0 the critical behavior
of the quantum XY model is of the KT-type, as in the classical
case. Quantum fluctuations change the quantitative behavior of
the model, but the qualitative picture of the classical system
persists [14]. When J340, we have the usual order-disorder phase
transition.

For J3¼0, there is no spontaneous magnetization for T40.
However, for ToTKT there is a quasi long-range order and the
spin-spin correlation functions shows a power law decrease with
distance (with an exponent proportional to T as T-0). A new
property appearing below the phase-transition temperature is the
stiffness r introduced by Berezinskii [15], by analogy with super-
fluid helium. At the KT temperature r drops to zero. Of course, for
J340, the magnetization is non null, but it is related to r, and
thus goes to zero at the same point where r vanishes.

2. Self-consistent Harmonic approximation

Simple approaches which yield an analytical description are
very useful for practical purposes. For an XY-like model such as
Hamiltonian Eq. (1), a very convenient theory is the self consis-
tent harmonic approximation (SCHA), which replaces the
Hamiltonian by an effective one with temperature-dependent
renormalized parameters [14,16,17]. Although it is a semiclassical
theory it has the advantage of being the only spin wave theory
which gives the KT-transition. We write the spins components in
the Hamiltonian (1) in terms of the Villain representation [18]
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where j is the operator corresponding to the azimuthal angle of
the spin around the z axis. Taking Eq. (2) into Eq. (1), writing
j¼fþp for the near-neighbor term (antiferromagnetic order),
and expanding the cosine term we obtain:
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where ~S
2
¼ SðSþ1Þ, and the stiffness r1for the near-neighbor

spins is given by [14]

r1 ¼ 1�
Sz

r

~S

� �2
" #* +

cosðfr�frþaÞ
�
:

�
ð4Þ

Here we are supposing that frþa�fr

�� ��oo1:This is true for
ToTKT, but not for T4TKT where the dissociation of vortices

disorder the system. Therefore our calculation is valid only at low
temperatures, i. e. To J [15].

Taking the Fourier transform we get
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where

gq ¼
1
2ðcosqxþcosqyÞ, and d¼D=2J1:

A procedure similar can be used for the other terms. We
remark that for the next-near-neighbor, in the Néel phase, the
spins are in the same direction and we take j¼f. Doing all the
calculations we arrive at the final result for the Néel phase
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The stiffness constants, renormalized by quantum fluctuations,
are given by
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where

g1 ¼ ð1�gqÞ, g2 ¼ ð1�xqÞ, g3 ¼ ð1�cos qzÞ: ð10Þ

xq ¼ cosqxcosqy, Z¼ J1=J2, and a¼ J3=J1: ð11Þ

By introducing the canonical transformation
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where aþq and aq are the boson-creation and annihilation opera-
tors, respectively, we can write Eq. (6) as
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Using Eq. (12), the static correlations can be calculated, and the
result is
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In the collinear phase, Eqs. (7) and (8) are substituted by

aðqÞ ¼ J1r1ðcos qy�cos qxÞþ2J2r2ð1�cos qxcos qyÞþ J3r3ð1�cos qzÞ:

ð17Þ

bðqÞ ¼ J1lðcos qxþcos qyÞþDþ2J2ð1þlcos qxcos qyÞþ J3ð1þlcos qzÞ:

ð18Þ

The other equations remain the same. The critical temperature
TC and the critical anisotropy parameter DC can be evaluated
where the stiffness drops to zero. We remark, once more, that for
a¼0, TC is the Kosterlitz–Thouless transition temperature TKT.
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