FISEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Magnetic properties of the $FeMn_{1-x}Ni_xGe$ compounds

Fatma Güçlü ^a, Ayşe Özdemir ^a, Igor Dubenko ^b, Tapas Samanta ^b, Naushad Ali ^b, Nazmiye Kervan ^a, Selçuk Kervan ^{a,*}

ARTICLE INFO

Article history:
Received 15 May 2012
Received in revised form
24 August 2012
Available online 16 September 2012

Keywords: Magnetically ordered material Magnetic measurement Ferromagnetism

ABSTRACT

The crystal structure and magnetic properties of the FeMn_{1-x}Ni_xGe ($0 \le x \le 1$) compounds have been studied by room temperature X-ray powder diffraction and magnetometric measurements within the temperature interval of 5–400 K and for magnetic fields up to 5 T. All compounds crystallize in a hexagonal Ni₂In-type crystal structure with space group $P6_3/mmc$ and show ferromagnetic behavior. It has been found that the temperature of magnetic ordering (T_c) increases nearly linearly with increasing Ni concentration from 163 K (T_c =0 to 304 K (T_c =0.4). Samples with T_c =0.8 are ferromagnetically ordered above 400 K. The concentration dependency of the saturation magnetization at 5 K (T_c) shows a maximum of T_c =0.81 T_c =1 formula unit for T_c =0.4.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Intermetallic compounds formed by the 3d transition metals with main group elements have been of considerable interest due to their interesting structural and physical properties [1-10]. For example, Nizol et al. [5] investigated magnetic properties of the Co_xNi_{1_x}MnGe compounds. It was found that all compounds crystallize in the orthorhombic TiNiSi-type crystal structure at low temperatures and in the hexagonal Ni₂In-type crystal structure at high temperatures. The compounds with $0 \le x \le 0.2$ have a helicoidal magnetic structure, while collinear ferromagnetic ordering is observed for $x \ge 0.5$. Samples with $0.3 \le x \le 0.5$ show helicoidal, non-collinear ferromagnetic and collinear ferromagnetic structure with increasing temperature. Lin et al. [10] studied structural and magnetic properties of MnFe_{1-x}Co_xGe compounds by using X-ray diffraction (XRD) and magnetization measurements. It was shown that the hexagonal Ni₂In-type crystal structure is observed for $x \le 0.8$ and the orthorhombic TiNiSi-type crystal structure is stable for x > 0.8. The Curie temperatures range from 159 K (x=0) to 345 K (x=1) for MnFe_{1-x}Co_xGe compounds. For MnFe_{1-x}Co_xGe compounds, saturation magnetization measured at 5 K increases with increasing *x* from 1.94 μ_B /f.u. (*x*=0) to 4.13 μ_B /f.u. (*x*=1).

FeMnGe and FeNiGe compounds adopt the hexagonal Ni₂In-type crystal structure with space group $P6_3/mmc$ [2,10]. In this structure, 3d transition metals occupy 2a(0,0,0) and 2d(1/3,2/3,3/4) sites and Ge atoms reside on 2c(1/3,2/3,1/4) sites. Fig. 1 shows the Ni₂In-type crystal structure drawn by using the Xcrysden code [11].

Previous investigations on FeMnGe and FeNiGe compounds have shown FeMnGe and FeNiGe orders ferromagnetically. The Curie temperature $T_{\rm C}$ and the saturation magnetization $M_{\rm S}$ at low temperatures are 159 K and 1.94 $\mu_{\rm B}/{\rm f.u.}$ for FeMnGe, 770 K and 0.5 $\mu_{\rm B}/{\rm f.u.}$ for FeNiGe, respectively [2,10]. This study deals with the crystal structure and the magnetic properties of the FeMn $_{1-x}{\rm Ni}_x{\rm Ge}$ (0 \leq x \leq 1) compounds.

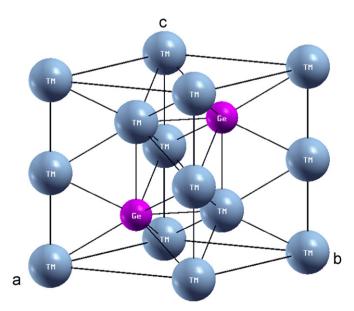


Fig. 1. Ni₂In-type crystal structure.

^a Department of Physics, Faculty of Arts and Sciences, Nevşehir University, 50300, Nevşehir, Turkey

^b Department of Physics, Southern Illinois University, Carbondale, IL 62901, USA

^{*} Corresponding author. Tel.: +90 384 215 3900; fax: +90 384 215 3948. E-mail address: selcuk.kervan@nevsehir.edu.tr (S. Kervan).

2. Experimental

 $FeMn_{1-x}Ni_xGe$ $(0 \le x \le 1)$ compounds were prepared by arc-melting the metals Fe (99.98%), Mn (99.99%), Ni (99.98%) and Ge (99.99%) in an argon atmosphere using a non-consumable tungsten electrode and a water-cooled copper hearth. The compound was re-melted several times to achieve a homogeneous composition. Samples, the mass of which had been determined carefully, were controlled after melting for mass loss. The mass loss was less than 3%. All measurements were performed on as-cast samples. X-ray diffraction (XRD) studies were carried out by using a Bruker D8 Advance diffractometer with CuKα radiation in twotheta range from 20° to 70°. The lattice parameters have been determined using the standard pattern matching method of the FULLPROF [12] program. The field-cooling (FC) and zero-fieldcooling (ZFC) temperature dependence of magnetization were performed with a superconducting quantum interference device (SQUID, MPMS-5, Quantum Design, USA) in the temperature range from 5 to 400 K and, the magnetization curves were measured

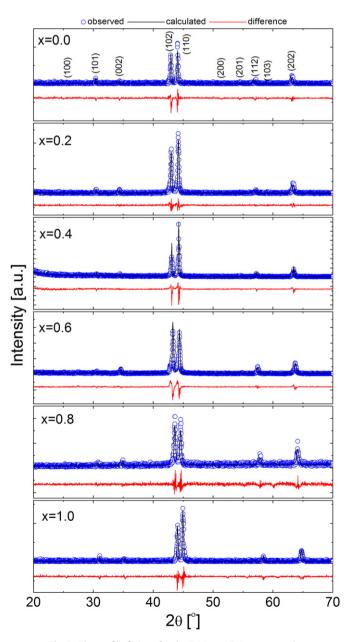
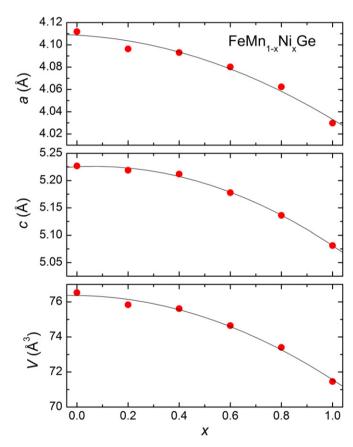



Fig. 2. The profile fittings for the $\text{FeMn}_{1-x}\text{Ni}_x\text{Ge}$ compounds.

at 5 K in fields up to 50 kOe. The sample was initially cooled in zero magnetic field and the ZFC data were collected on warming by applying a magnetic field of 100 Oe. Subsequently, the FC data were collected upon cooling without removing the applied field. The values of the Curie temperatures ($T_{\rm C}$) have been estimated from the temperature derivative of the FC magnetization versus temperature curve (dM/dT).

3. Results and discussion

The X-ray diffraction patterns confirm the existence of a hexagonal phase having the Ni_2 In-type structure with the space group $P6_3/mmc$. Fig. 2 shows the X-ray diffractogram of the FeMn_{0.6}Ni_{0.4}Ge compound as a representative example. The lattice parameters a and c, and the unit cell volume V for the FeMn_{1-x}Ni_xGe samples at room temperature are shown in Fig. 3, while the refined unit-cell parameters a and c, and unit cell

Fig. 3. Variation of the lattice constants a and c, the unit cell volume V with Ni concentration x at room temperature for the FeMn_{1-x}Ni_xGe compounds. Solid lines are polynomial fits and serve as guide to the eye.

Table 1 The lattice constants a and c, volume V, the Curie temperature (T_C), the saturation magnetization M_S for the FeMn_{1-x}Ni_xGe compounds.

x	a (Å)	c (Å)	$V(\mathring{A}^3)$	$T_{C}\left(K\right)$	$M_{\rm S}$ ($\mu_{\rm B}/{\rm f.u.}$)
0.0 0.2 0.4 0.6 0.8	4.1118(5) 4.0964(6) 4.0931(3) 4.0802(4) 4.0623(6) 4.0298(6)	5.2268(8) 5.2189(8) 5.2118(4) 5.1777(6) 5.1362(8) 5.0812(8)	76.53(3) 75.84(3) 75.62(2) 74.65(2) 73.40(3) 71.46(3)	163(3) 268(2) 304(5) 243(3)	1.638(5) 2.693(3) 2.806(2) 2.222(2) 1.153(2) 0.641(5)

Download English Version:

https://daneshyari.com/en/article/8159150

Download Persian Version:

https://daneshyari.com/article/8159150

<u>Daneshyari.com</u>