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We present up to date investigations of the antiferromagnetic Heisenberg icosidodecahedron by means

of the density matrix renormalization group method. We compare our results with modern correlator

product state as well as Lanczos calculations.
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1. Introduction

Thanks to advanced chemical strategies there exist several
chemical realizations of icosidodecahedral magnetic molecules:
Mo72Fe30 [1], W72Fe30 [2] (both s¼5/2), Mo72Cr30 [3] (s¼3/2),
Mo72V30 [4,5], and W72V30 [6] (both s¼1/2). These molecules are
some of the largest magnetic molecules synthesized to date [7].
Icosidodecahedral magnetic molecules are of special interest
because they are highly symmetric, frustrated, exist with different
spin quantum numbers, and are a kind of finite-size version of the
Kagomé lattice antiferromagnet [8]. Fig. 1 shows the structure of
the icosidodecahedron. It is an Archimedian Solid with 12
pentagons and 20 triangles, which means that it is geometrically
frustrated [9].

Experimental investigations of these molecules are in most
cases measurements of the susceptibility as a function of tem-
perature [1–6] or magnetic field [10,11], or magnetization as a
function of the applied magnetic field [1,11,12]. These experi-
mental investigations show that the icosidodecahedral magnetic
molecules are antiferromagnetic with a nonmagnetic ground
state. Other experimental techniques that were applied to these
molecules are NMR and mSR [13–15], INS [16], diffuse (elastic)
neutron scattering, as well as specific heat measurements [17].

These molecules are usually modeled using a simple Heisenberg
model [1–4,6,16–23]. Anisotropic terms were considered in Refs.
[22,24]. Bond disorder and distortions (i.e., more than just one
exchange constant in the Heisenberg Hamiltonian) were investigated
in Refs. [10,23]. However, since the icosidodecahedral molecules

comprise N¼30 spins, the numerical exact calculation of T¼0
properties is possible only for the s¼1/2 case [8,25,26]. Quantum
Monte Carlo suffers from the negative-sign problem so that small
temperatures are not feasible [3,4,6]. Thermodynamical properties at
T40 can for s¼1/2 also be calculated quasi-exactly using the finite-
temperature Lanczos method [21,23,27]. For s41=2, approximations
are needed. For s¼3/2 and s¼5/2 systems, the classical Heisenberg
model was used together with efficient classical Monte Carlo
algorithms [1,2,10,18,19,22,28]. However, such an approximation is
inappropriate at very low temperatures. The rotational band approx-
imation was used in Refs. [1,12,16,17,20,29,30]. Although being a
quantum mechanical approximation it misses important features of
frustrated systems such as magnetization jumps and plateaus or
low-lying singlets in the spectrum [25]. Another approximation
applied to the icosidodecahedron is spin-wave theory [20,24]. How-
ever, as for the rotational band and the classical approximation, it is
not clear how accurate this approximation is.

It has to be emphasized here that although there exist many
theoretical studies on the icosidodecahedron for s41=2, accurate
numerical calculation for the full Heisenberg model are very rare.
The density matrix renormalization group (DMRG) method allows
for treating the full Heisenberg Hamiltonian but in a reduced
Hilbert space [31,32]. It relies on a controlled truncation of the
Hilbert space and allows for the estimation of the accuracy so that
it seems to be suited for these systems. In Ref. [33] the DMRG
method has already been applied to the Heisenberg icosidodeca-
hedron with s¼5/2. However, only up to m¼120 density matrix
eigenstates were used, so that the accuracy of the results is rather
limited for such a complicated system with a geometry that is not
favorable for the DMRG method.

In this paper we apply the DMRG method to the antiferromag-
netic Heisenberg icosidodecahedron. We focus on the calculation
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of the lowest energies in subspaces of total magnetic quantum
number M which allow for a calculation of the T¼0 magnetization
curve and also gaps which might be of importance for spectro-
scopic methods such as, e.g., inelastic neutron scattering (INS).
These results are compared with very recent variational Monte
Carlo calculations using correlator product states (CPS) by Neus-
camman and Chan in Ref. [34]. Finally, for the case s¼1/2 we also
calculate the dynamical correlation function Sz

locðoÞ using the
dynamical DMRG (DDMRG) [35].

2. DMRG results

The DMRG technique is best suited for open one-dimensional
chain systems but can be applied to systems with an arbitrary geo-
metry. The icosidodecahedron can be viewed as a two-dimensional
lattice on a sphere (similar to the Kagome lattice, see [8]), i.e., with
periodic boundary conditions. This means that the convergence is
much slower than in one-dimensional systems [33]. But since DMRG
is a variational method, it is clear that the ground state – or the
lowest energy in a subspace – is the better the lower the correspond-
ing energy is. Also, the truncated weight Dw offers the possibility to
judge the quality of the results and an extrapolation to zero truncated
weight (or m-1) might be possible.

For the investigations throughout this article we employ the
Heisenberg Hamiltonian
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with antiferromagnetic isotropic nearest neighbor exchange J only.

2.1. Numbering of the spins

When DMRG is applied to spin systems that are not one-
dimensional, the usual way is to map the system on a one-
dimensional chain with long-range interactions, i.e., to number
the spins of the lattice [36]. However, if not very simple systems
such as, e.g., ladders are investigated, it is not clear, which
numbering is best suited. Such a problem also occurs, when
DMRG is applied in the context of quantum chemistry, where
models similar to the Hubbard model with long-range interac-
tions appear and the ordering, i.e., the numbering of the orbitals is
relevant [37–41]. Since long-range interactions diminish the
accuracy of DMRG (cf. Ref. [42]) it is clear that a good ordering
needs to minimize such long-range interactions.

We have tested several numberings for the icosidodecahedron.
The resulting coupling matrices Jij are shown in Fig. 2. The
numbering used by Exler and Schnack in an earlier investigation
[33] (see top left of Fig. 2) gives a very regular ‘‘interaction
pattern’’ with rather-short-ranged interactions, but the ‘‘periodic
boundaries’’, i.e., interactions between the first and the last spins,
are clearly not optimal for the DMRG algorithm with two center

sites. As proposed in Ref. [37], we have used a variant of the
reverse Cuthill–McKee algorithm [43,44], the RCMD algorithm,
which aims to number the vertices such that the bandwidth of the
matrix is minimized. We have also used the Sloan algorithm [45]
which minimizes the ‘‘envelope size’’, i.e., the sum of the ‘‘row
bandwidths’’. (The bandwidth is the maximum of the row
bandwidths.) We have used these algorithms as implemented in
Mathematica [46]. The figure also shows an unoptimized numbering
for comparison.

The results of DMRG calculations (using the ALPS DMRG code
[47]) for the different spin numberings are shown in Fig. 3. We
have calculated the ground state energy of the s¼1/2 icosidode-
cahedron with an increasing number of kept density matrix
eigenstates (m) so that the convergence can be investigated and
a comparison with the exact ground state energy (see Ref. [8]) is
possible. One can see that the different optimized numberings
(Exler/Schnack, RCMD, and Sloan) give almost identical results
whereas the unoptimized numbering gives much worse results.
These results show that a ‘‘good’’ numbering of the spins is
absolutely essential if the DMRG method is applied to a spin
system with a complicated structure. For the following results we
have always used the numbering as proposed by Exler and
Schnack.

2.2. Lowest energy eigenvalues and magnetization curves

As a next step we have calculated the lowest energies in the M

subspaces for the icosidodecahedron with s41=2 using DMRG.
The results for the s¼1/2 system already showed that DMRG is
able to produce very accurate results for this system with relative
errors smaller than 10�3.

Fig. 4 shows the lowest energy eigenvalues in the subspaces of
total magnetic quantum number M for the icosidodecahedron
with s¼1 and s¼3/2 as obtained by DMRG and – for the large-M

subspaces (M418 for s¼1 and M433 for s¼3/2) – Lanczos
calculations. We have used up to m¼2500 density matrix
eigenstates for the s¼1 case and up to m¼2000 for the s¼3/2
case. The largest truncated weight within a sweep is of the order
of 7� 10�4 for the M¼0 subspace of the s¼1 icosidodecahedron
and of the order of 4� 10�4 for the s¼3/2 case. That the truncated
weight for the s¼1 icosidodecahedron is larger than for s¼3/2
although more states have been used for s¼1 indicates that it
cannot be reliably used for a quantitative estimate of the error.
The reason for this behavior might be that the results are not yet
fully converged for the value of m that we have used, although we
have carried out up to 60 sweeps for the calculations.

The rotational band model predicts a behavior of the form
EminðMÞ ¼ aMðMþ1Þþb, i.e., a parabolic dependence [12]. The
insets of Fig. 4 show that this is a good approximation for the
energy eigenvalues of the full Heisenberg model. The simple
rotational band approximation predicts a proportionality constant
of a¼0.1. The linear fits as shown in the insets give the results
a¼0.111 for s¼1 and a¼0.108 for s¼3/2, very close to the simple
rotational band approximation. However, if one uses these
(DMRG) data to calculate the zero-temperature magnetization
curve, it becomes clear that there are some crucial deviations
from the ideal parabolic dependence. If there was an ideal
parabolic dependence, the resulting magnetization curve would
consist of steps with constant widths. Fig. 5 shows the resulting
zero-temperature magnetization curves as calculated using the
DMRG data. Again, the exact diagonalization data for s¼1/2 are
taken from Ref. [8].

One can see that the magnetization curves do not consist of steps
with constant widths. There are some anomalies as expected for
frustrated systems. The plateaus atM=Msat ¼ 1=3 are clearly visible.
The magnetization jumps due to the independent magnons [26]

Fig. 1. Structure of the icosidodecahedron: the bullets correspond to the spin

positions and the lines to interaction paths between them. The right part of the

figure shows the two-dimensional projection.
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