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Abstract The steady two-dimensional MHD rotating flow of a second grade past a porous shrink-

ing surface is investigated. The governing system of partial differential equations is transformed into

ordinary differential equations, which are then solved analytically by using the homotopy perturba-

tion technique. The effects of the governing parameters on the flow field are obtained and discussed

graphically in detail.
� 2011 Ain Shams University. Production and hosting by Elsevier B.V.

All rights reserved.

1. Introduction

The study of boundary layer flow due to a stretching sheet is

important in industrial applications such as in extrusion pro-
cesses. Sakiadis [1] did the pioneering work of boundary layer
flow over a stretching sheet. Later, Tsou et al. [2] and Crane [3]
studied the steady two-dimensional boundary layer flow over a

stretching flat surface. Gupta and Gupta [4] extended this idea

to include suction or blowing. On the other hand, boundary
layer flow past a stretching sheet in a rotating fluid has been
studied in various aspects by Wang [5], Rajeswari and Nath
[6], Vajravelu and Kumar [7] and Nazar et al. [8] in Newtonian

fluids, while in non-Newtonian fluids; Kumari et al. [9] ana-
lyzed such a flow of a power-law fluid. Besides that, Ali and
Magyari [10] studied the unsteady two dimensional boundary

layer flow and heat transfer stretching problem when the stea-
dy motion was slowed down gradually and Kumari and Nath
[11] considered the unsteady flow at the axisymmetric stagna-

tion point of a rotating body of revolution (sphere) with mass
transfer, which is important in the study of spacecraft and
missiles.

Recently, a paper by Miklavcic and Wang [12] investigated

the flow over a shrinking sheet, where the velocity on the
boundary is toward a fixed point, and found an exact solution
of the Navier–Stokes equations. It was found that mass suc-

tion is required to maintain the flow over a shrinking sheet.
From physical point of view, vorticity of the shrinking sheet
is not confined within a boundary layer, and the flow is unli-

kely to exist unless adequate suction on the boundary is
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imposed [12]. This new type of shrinking sheet flow is essentially

a backward flow as discussed by Goldstein [13]. It is worth men-
tioning to this end that important and new results on the flow in-
duced by a shrinking sheet in a viscous fluid were recently
presented by Fang [14], Wang [15], Fang and Zhang [16], Fang

et al. [17,18]. There are two conditions that the flow toward the
shrinking sheet is likely to exist, whether an adequate suction on
the boundary is imposed (Miklavcic andWang [12]) or a stagna-

tion flow is considered (Wang [15]), so that the velocity of the
shrinking sheet is confined in the boundary layer. As mentioned
previously, solutions do not exist for larger shrinking imperme-

able sheet in an otherwise still fluid, since vorticity could not be
confined in a boundary layer. However, with an added stagna-
tion flow to contain the vorticity, similarity solutions may exist.

The field ofMHDwas initiated by Swedish physicist,Hannes
Alfven for which he received in 1970 the Nobel Prize [19]. The
official birth of incompressible fluid magneto-hydrodynamic is
1936–1937. In 1937, Hartmann and Lazarus [20] studied the

influence of a transverse uniform magnetic field on the flow of
a viscous incompressible electrically conducting fluid between
two infinite parallel stationary and insulating plates. The most

appropriate name for the phenomena would be Magneto-Fluid
Mechanics, but the original nameMagnetohydrodynamic is still
generally used. MHD problems arise in a wide variety of situa-

tions ranging from the explanation of the origin of Earth’s mag-
netic field and the prediction of space weather to the damping of
turbulent fluctuations in semiconductor melts during crystal
growth and even the measurement of the flow rates of beverages

in the food industry. The description of MHD flows involves
both the equations of fluid dynamics, the Navier–Stokes equa-
tions, and the equations of electrodynamics, Maxwell’s equa-

tions, which are mutually coupled through the Lorentz force
andOhm’s law formoving electrical conductors.Due to the cou-
pling of the equations of fluid mechanics and electrodynamics,

the equations governing MHD flows are rather cumbersome
and exact solutions are, therefore, available only for some sim-
ple geometry subject to simple boundary conditions.

There are different methods in the literature to deal with such
kinds of problems like the Adomian decomposition method [21],
the variational iteration method [22–24], the Laplace decomposi-
tion method [25,26], the homotopy perturbation transform meth-

od [27] and the homotopy perturbation method (HPM) [28–30].
The homotopy perturbationmethod is themethod, which is a cou-
pling of the traditional perturbation method and homotopy in

topology, deformscontinuously toa simpleproblemwhich is easily
solved. This method, which does not require a small parameter in
an equation, has a significant advantage in that it provides analyt-

ical approximate solutions to a wide range of nonlinear problems
arising in applied sciences [31–40]. Motivated by the above discus-
sion, in this paperwe considerMHDrotatingflowover a shrinking

surface. Present analysis has been carried out based on the homot-
opy perturbation method.

2. Formulation of the problem

Consider the MHD rotating flow of an incompressible second
grade fluid over a shrinking surface at z= 0. Fluid occupying

the space z> 0 is rotating with uniform angular velocity X,
both fluid and plates are rotating with constant angular veloc-
ity X about the z-axis. The flow in the fluid system is caused

due to shrinking of a plate. The following equations of conti-
nuity and momentum:

div ¼ 0; ð2:1Þ

q
@V

@t
þ ðV:rÞVþ 2X� Vþ X� ðX� rÞ

� �
¼ divTþ J� Bþ R; ð2:2Þ

where V= (u, v, w) is the velocity field, q is the density, R is

the Darcy’s resistance, J is the current density, B is the total
magnetic field so that B = B0 + b, b is the induced magnetic
field (it is to be assumed that the induced magnetic field pro-

duced by the motion of an electrically conducting fluid is neg-
ligible compared to the applied magnetic field B0) and r is a
radial vector. The Cauchy stress tensor T for an incompress-

ible second grade fluid is given by

T ¼ �pIþ lA1 þ a1A1 þ a2A
2
1; ð2:3Þ

in which T is the Cauchy stress tensor, p is the pressure, I is an
identity tensor, l is the dynamic viscosity, a1, a2 are the mate-
rial constants and A1, A2 are the first two Rivilin Erickson ten-

sors defined as

A1 ¼ Lþ LT; ð2:4Þ

A2 ¼
dA1

dt
þ A1Lþ LTA1; ð2:5Þ

L ¼ rV: ð2:6Þ

Furthermore, a1 and a2 satisfy the following constraints:

l P 0; a1 P 0; a1 þ a2 ¼ 0: ð2:7Þ

Finally, continuity equation and momentum equation take the

form:
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with the boundary conditions

u ¼ uwðxÞ ¼ �cx; m ¼ 0; w ¼ �W; at z ¼ 0;

u! 0; m! 0 as z!1;
ð2:11Þ

in which c > 0 the shrinking constant and W > 0 the uniform

suction velocity.
Introducing the following similarity transforms

u ¼ cxf0ðgÞ; m ¼ cxgðgÞ; w ¼ � lc
q

� �1
2

fðgÞ; g

¼ qc
l

� �1
2

z; ð2:12Þ
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