Contents lists available at SciVerse ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Magnetic properties of selected substituted spinel ferrites

Jozef Sláma, Martin Šoka*, Anna Grusková, Rastislav Dosoudil, Vladimír Jančárik, Jarmila Degmová

Slovak University of Technology, Department of Electromagnetic Theory, Faculty of Electrical Engineering and Information Technology, Ilkovičova 3, 81219 Bratislava, Slovak Republic

ARTICLE INFO

Article history: Received 6 December 2011 Received in revised form 29 February 2012 Accepted 11 July 2012 Available online 21 July 2012

Keywords: LiZnTi ferrite LiZn ferrite NiZn ferrite saturation magnetization/polarization Curie temperature

ABSTRACT

Polycrystalline NiZn ferrites with the chemical formula $(Ni_{0.3}Zn_{0.7})_{1-x}Me_xFe_2O_4$ where Me is Cu^{2+} or Be^{2+} ion with x=0.05, 0.1 and 0.25 have been prepared by a ceramic method. Selected magnetic properties such as saturation magnetisation M_{s} . Curie temperature T_C coercivity H_C and permeability of the ferrites have been measured and discussed to compare of the substituted $Li_{0.5-0.5y+0.5r}$ $Zn_yTi_rFe_{2.5-0.5y-1.5t}O_4$ ferrites, when y=0.1, 0.2, 0.3, 0.4 and t=0.35, 0.45, 0.55. The samples have been prepared by a ceramic method and the samples $Li_{0.5-0.5y}Zn_yFe_{2.5-0.5y}O_4$ by a chemical way. Mössbauer spectra and crystallographic parameters of selected samples have been analysed as well. © 2012 Elsevier B.V. All rights reserved.

1. Introduction

It is still a lack of detailed information on properties of the RF magnetic dielectrics and their practical applications. The magnetic properties of polycrystalline ferrites are determined by chemical composition and depend also on the ionic distribution and on the method of preparation. The way of preparation forms a grain size, grain boundaries and pores, and thus influences extrinsic properties. An adequate amount of substituents can greatly affect the magnetic properties due to the ionic distribution [1–2,4–12]. The additives could improve intrinsic magnetic properties (saturation magnetisation/polarisation and Curie temperature) and extrinsic magnetic properties of ferrites. The Me'Fe₂O₄ spinel ferrites, where $Me' = Ni^{2+}$ or $(LiFe)^{2+}_{0.5}$ are the divalent ion or appropriate combination of two (monovalent Li⁺ and trivalent Fe^{3+}) ions are well known for their high frequency properties among the oxide-based materials applied in electronics. As will be shown the magnetic properties depend not only on the ionic distribution, but also on starting composition of substituted Me'Fe₂O₄ ferrite. A variety of Ni or (LiFe)_{0.5} ferrites have emerged by substituting metal ions and the amount of ion replaced is dictated by the valence of the substituting ions and can be given by divalent ions Me^{2+} , as example. If $Me^{2+} = Zn^{2+}$, the substituted Ni ferrite is known Ni_{1-y}Zn_yFe₂O₄ or substituted (LiFe)_{0.5} ferrite is Li_{0.5-0.5y}Zn_yFe_{2.5-0.5y}O₄. In addition, in the second substitution of NiZn ferrite, the additives are given by divalent

E-mail address: martin.soka@stuba.sk (M. Šoka).

 $Me^{2+}=Cu^{2+}$ or Be^{2+} ions, which goes to B sites in $Ni_{1-y}Zn_y$ $Me_xFe_2O_4$. In the case of second substitution of LiZn ferrite ion is given by tetravalent Ti⁴⁺, which goes to B sites in $Li_{0.5-0.5y+0.5t}$ $ZnyTi_tFe_{2.5-0.5y-1.5t}O_4$. This paper summarizes and compares the consequences of the above mentioned substitutions on changes of magnetic properties ferrites.

2. Experimental methods

The phase compositions of the substituted NiZn ferrites and Li ferrites synthesized by ceramic method and chemical way were analysed. The temperature dependences of the magnetic susceptibility χ (T) and the Curie temperature T_C were measured by the bridge method in an alternating magnetic field of 421 A/m at 920 Hz. The saturation magnetisation M_S was measured by means of vibration sample magnetometer. The results were compared with the results obtained by Mössbauer spectroscopy using the spectrometer with γ -ray source of ⁵⁷Co imbibed in a rhodium matrix measured by a convetional constant acceleration drive with a 512 channel analyser operating in the multiscaler mode and by PANanalytical X'PertPRO diffractometer using Co K_{α} source. The average grain size was calculated by the Scherrer equation. Rietveld method as implemented in the DiffracPlus Topas program (Bruker AXS, version 4.2) was used for determining crystallographic parameters and estimation of weight fractions of as identified oxides. The complex permeability of synthesised samples was measured at room temperature in the frequency range was 1 MHz-1 GHz using an impedance analyser (HP4191A). The size and shape of the ferrite powder and grains of sintered samples have been examined by SEM.

^{*} Corresponding author. Tel.: +421 260291424.

^{0304-8853/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jmmm.2012.07.016

Fig. 1. Saturation magnetisation of substituted NiZn ferrites as a function of Zn, Cu/Be concentration.

3. Changes of NiZn ferrite properties caused by Cu/Be substitution

The measured data of presented substituted NiZn ferrites can be qualitatively compared to the well-known behaviour of the saturation magnetic moments of mixed $Ni_{1-y}Zn_y$ ferrites as a function of Zn concentration y with cation distribution $(Zn_vFe_{1-v})[Ni_{1-v}Fe_{1+v}]O_4$, which was measured at 4.2 K (Fig. 1) [3]. The cations in the parentheses occupy A (tetrahedral) sites and those in square brackets B (octahedral) sites. The saturation magnetisation $M_{\rm S}$ as a function of Zn content increases with increasing substitution (*y*), then it goes through the maximum for intermediate values of y, further decreases and finally vanishes for high Zn contents. As the Zn content increases, the magnetic moments in A sites decrease, while in B sites increase. If the magnetic moments of Fe^{3+} and Ni^{2+} are ~ 5 and $\sim 2.2\,\mu_B$, respectively, the saturation magnetisation can be expressed theoretically as $M_{\rm S} = [y(10-2.2)]$ +2.2 | $\mu_{\rm B}$. This relationship (dashed line in Fig. 1) is not followed over the entire composition range. As the Zn content increases, AB super-exchange interactions become weak and BB interactions start to dominate. Instead of collinear anti-parallel alignment, a canted structure appears where the spins in B sites are no longer parallel. The Curie temperature T_C is primary determined by the AB interaction and therefore decrease with the number of AB interactions, i.e., with increasing y. The $M_{\rm S}$, $T_{\rm C}$ and other properties of Ni_{1-v}Zn_vFe₂O₄ ferrite are dependent on Zn contents y. Therefore if in this system one wants to estimate the effects of substitution to improve its final properties, one must find suitable kind of substituent and the composition of starting the NiZn ferrite. For various y, the same substituents— Me_r^{2+} can have distinguishable effect in substituted system at the same *x* contents.

In the first example, change of ion distribution within the spinel structure, caused by partial substitution of divalent Ni²⁺ ions by Me²⁺ = Cu²⁺ ions, was carried out in the Ni_{0.8-x}Zn_{0.2}Cu_{x-}Fe₂O₄ system described in [2], while the content of Zn remained unchanged, *y*=0.2. The placement of ions into the sites was governed by theoretical formula as follows

 $(Zn_{0.2}Fe_{0.8})[Ni_{0.8-x}Cu_xFe_{1.2}]O_4.$ (1)

and the magnetic moment will be given by the expression

$$(5 \times 0.8)[2.2(0.8-x)+1x+5 \times 1.2)]$$
 µ_B. (2)

In this system the magnetic moment of B sites decreased, because Ni²⁺ ions with magnetic moment of \sim 2.2 μ_B were replaced by

 Cu^{2+} ions with $\sim 1 \mu_B$. Thus, the authors of [2] could observe the decrease of magnetic moment with the increasing Cu^{2+} content *x* at small concentrations. The main reason of that can be that Cu^{2+} ions prefer the B sites of the spinel structure, see Eq. (2). Then Cu^{2+} ions in B sites replace the respective part of Ni²⁺ ion, and the Fe³⁺ ions are not changed in both B and A sites. Thus the strength of AB super-exchange interaction among Fe³⁺ ions is invariable. Therefore the T_C for Cu²⁺ substituents remains practically unchanged in this case. If we could accept idea of the partial migration of Cu^{2+} ions into A sites [2], then Cu^{2+} ions in A sites shift the respective part of Fe³⁺ ions from A to B sites. Increase of Fe³⁺ ions concentration in B sites and simultaneously decrease of Fe³⁺ in A sites impose the decrease of AB interaction, from which the decrease of value of T_C results. But this was not found in experiment. This was one example of partial substitution of Ni only with Cu for region of y < 0.47 in NiZn ferrite.

In the second step, for substitution in region of y > 0.47 the other example of partial substitution in Ni_{0.3}Zn_{0.7} starting ferrite was made. The effects of two different substituents of Me²⁺ = Cu²⁺ or Be²⁺ on the microstructure and magnetic properties of (Ni_{0.3}Zn_{0.7})_{1-x}Me_xFe₂O₄ was investigated for $x=0\div0.25$. The variation of saturation magnetisation M_S as a function of substituent contents x for Me²⁺ = Cu²⁺ substitution measured at room temperature is also shown in Fig. 1. M_S was found to increase with increasing concentration of substituent x up to a certain value. Similar behaviour M_S vs. x was published in [6]. In presented experiment the substitution of Cu²⁺ ions the basic composition of (Ni_{0.3}Zn_{0.7})_{1-x}Cu_x ferrite yields total magnetic moment according to the scheme:</sub>

$$(Zn_{0.7(1-x)}Fe_{0.3+0.7x})[Ni_{0.3(1-x)}Me_{x}Fe_{1.7-0.7x}]O_{4}.$$
(3)

for y=0.7 the Me²⁺ =Cu²⁺ substitution (x > 0) results in decreasing of Ni²⁺ ions (0.3x) concentration in B sites by an adequate amount of Cu²⁺ ions. Further, there is a migration of some Fe³⁺ ions (0.7x) from B sites into A sites due to residual content of Cu²⁺ ions. These Fe³⁺ ions (0.7x) replace some Zn²⁺ ions (0.7x) in A sites, and the theoretical magnetic moment will be given by the expression

$$\hat{5}(0.3+0.7x)[2.2\cdot0.3(1-x)+1x+5(1.7-0.7x)] \mu_{\rm B}^{\prime}$$
 (4)

where adequate $Ni^{2\,+}$ ions with magnetic moment of ${\sim}2.2~\mu_B$ were replaced by Cu^{2+} ions with $\sim 1 \mu_B$ in B sites. However, increasing the amount of Fe³⁺ ions in A sites are able to align more moments of B sites anti-parallel each other. It results in the increase of B sites effective saturation magnetisation due to decrease of canting between magnetisation vectors of B' and B" sub-lattices. Therefore the total saturation magnetisation increases with each substitution step up to critical x_c and then slightly decreases. By decreasing the amount of 0.7(1-x) of Zn^{2+} (except for Ni²⁺ ions) in the substitution $(Ni_{0.3}Zn_{0.7})_{1-x}Cu_x$ ferrite shown in Fig. 1 we have shifted Zn contents from y=0.7 to $y=0.7(1_0.25)=0.525$. The behaviour of total magnetic moment can be verified by the measurement of the saturation magnetisation as a function of Zn contents, too. The well-known behaviour of the saturation magnetic moments of the $Ni_{1-y}Zn_y$ ferrites [3] (Fig. 1) clears up the fact that in this case the $M_{\rm S}$ has to increase with increasing Cu content, for region of Zn ions y > 0.47. The strength of AB interaction and thus T_c are increased for x=0.05 up to 0.25 (see Fig.2). The main reason for the increasing of super-exchange interactions can be that Cu ions prefer B sites with consequent the increase of the amount of Fe^{3+} ions in A sites, as it follow from Eq. (4).

The M_s has been found to increase also with substituent concentration also for Be²⁺ ions. For y=0.7 the Me²⁺=Be²⁺ substitution (x > 0) results in decreasing of Ni²⁺ ions (0.3x)

Download English Version:

https://daneshyari.com/en/article/8159657

Download Persian Version:

https://daneshyari.com/article/8159657

Daneshyari.com