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Abstract The creeping motion of a rigid slip sphere in an unbounded couple stress fluid is inves-

tigated. The linear slip boundary condition and the vanishing couple stress condition are applied on

the surface of the sphere. A simple formula for the drag force acting on a slip sphere translating in

an unbounded couple stress fluid is obtained. Special cases of the deduced drag formula are con-

cluded and compared with analogous results in the literature. The normalized drag force experi-

enced by the fluid on the slip sphere is represented graphically and the effects of slip parameter

and viscosity coefficients are discussed.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The theory of couple stress fluids has been introduced by
Stokes [1,2] to avoid the inadequacy of the classical
Navier–Stokes model describing the correct behavior of some

types of fluids with microstructure such as animal blood flow,
chemical suspensions, and liquid crystals [3,4]. In the devel-
oped theory of fluids with couple stresses, it is considered

that the surface of a portion of the fluid medium is affected
on by a stress vector in addition to a couple stress vector [1].
The presence of non-symmetric stress tensor, body couples,

and couple stress tensor, depending on the curvature twist
rate tensor, distinguishes the model of couple stress fluids.
Mathematically, the motion of a couple stress fluid is
governed by an equation similar to the classical Navier–Stokes

equation but with higher order and the constitutive equations

are characterized by two tensors representing the stresses and

the couple stresses [2].
Fluids with microstructure can also be described by another

model, namely micropolar fluids, introduced by Eringen.

Many authors have utilized the model of micropolar theory
to physical problems of fluids with microstructure such as
blood flow. A general expression for the drag force experienced

by a micropolar fluid on an axisymmetric body has been
derived by Ramkissoon and Majumdar [3]. They applied their
derived formula to discuss the flow of micropolar fluid past a
sphere. Hoffmann et al. [4] discussed the drag on a sphere in

micropolar fluids assuming non-homogeneous boundary con-
dition for the microrotation vector. Shu and Lee [5] derived
fundamental solutions for micropolar fluids due to a point

force and a point couple and applied their results to obtain
the drag force acting on a solid sphere that translates in a
low-Reynolds number micropolar flow. Deo and Shukla [6]

studied the problem of creeping flow of a micropolar liquid
past a fluid sphere with non-homogeneous boundary condition
for microrotation. They discussed the drag force acting on the
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fluid sphere with respect to the material parameters. Ashmawy
[7] obtained a general formula for the drag on a sphere placed
in a creeping unsteady micropolar fluid flow.

Many other researchers have investigated viscous fluid flow
problems through the use of Navier–Stokes equations. Felder-
hof [8] studied the steady motion of a viscous incompressible

fluid with spinning particles using no-slip boundary condition.
Lindgren [9] investigated the motion of a sphere in a viscous
liquid at Reynolds numbers considerably less than one. Also,

Liao [10] applied the homotopy analysis method to give
approximate solutions for viscous fluid flow past a sphere
using no-slip condition.

Although too many researchers considered viscous and

micropolar fluid flows, less attention has been given recently
to the model of couple stress fluids. Pralhad and Schultz [11]
investigated the problem of blood flow in a stenosed tube using

the couple stress model. Reddy et al. [12] studied the blood
flow between the clogged artery and the catheter using the
model of couple stress fluid. The same authors studied the

problem of blood flow through unsymmetric stenosed tapered
artery in the presence of catheter [13] using the model of couple
stress fluids. Naduvinamani et al. [14] discussed the effect of

surface roughness on the hydrodynamic lubrication of couple
stress squeeze film between a sphere and a flat plate. Devakar
and Iyengar [15] studied the motion of a couple stress fluid
between two parallel plates. Iyengar and Vani discussed the

slow rotational motion of a couple stress fluid between two
confocal oblate spheroids [16]. The oscillatory flow of an
incompressible couple stress fluid through an annulus with

mild constriction at the outer wall is studied by Srini-
vasacharya and Srikanth [17]. Devakar et al. [18] applied the
slip condition to the Couette and Poiseuille couple stress fluid

flows.
The classical no-slip boundary condition has been applied

extensively in the field of fluid dynamics. However, in the last

century numerous studies have been established that the no-
slip condition may not always occur and that the slippage of
fluid particles on the surface of the rigid boundary can take
place [19,20]. Recently, a linear slip boundary condition stating

that the fluid tangential velocity relative to the solid boundary
is proportional to the shearing stress acting at the contact
point has been proposed and applied to many fluid problems

either viscous or micropolar [21–29].
Based on the above mentioned literature review and to the

best knowledge of the author, the influence of the drag force

experienced by a couple stress fluid on a moving sphere, utiliz-
ing linear slip condition, has not been investigated yet. In the
present work, we investigate the slow steady motion of a slip
spherical particle in an unbounded incompressible couple

stress fluid. The velocity slip boundary condition is applied
on the surface of the rigid boundary. Also, it is assumed that
the couple stress vanishes on the surface of the sphere. The

drag force experienced by the couple stress fluid on the surface
of the sphere using slip condition is obtained and represented
graphically.

2. Formulation of the problem

The field equations governing a slow steady motion of an

incompressible couple stress fluid, in the absence of body
forces and body couples, are [1,2]

qi;i ¼ 0; ð2:1Þ
lqi;jj � gqi;jjkk � p;i ¼ 0; ð2:2Þ
where qi is the velocity vector and p represents the fluid pres-
sure at any point in the fluid flow. The classical viscosity coef-
ficient l has the dimensions M/LT while the couple stress

viscosity parameters g and g0 have the dimensions of momen-
tum, namely ML/T. These material constants are constrained
to the following restrictions [2].

l P 0; g P 0; g P g0 ð2:3Þ
To completely describe the problem governed by (2.1) and
(2.2), a set of six boundary conditions are needed. Three
boundary conditions on the velocity, namely slip conditions,

and three boundary conditions on couple stresses are provided.
The following slip boundary condition is imposed on the

surface of the spherical particle, r = r0, [22]

b0ðqi �UêzÞ ¼ ðI� nknkÞ ðnjtjiÞ on r ¼ r0; ð2:4Þ
where êz is the unit vector along z-direction, nj is the unit nor-
mal to the boundary pointing into the fluid and I is the unit
dyadic. In addition, the parameter b0 is termed the slip coeffi-

cient which is varying from zero to infinity. This parameter
depends only on the nature of the fluid flow and the material
of the boundary. The classical case of no-slip condition can

be recovered as a special case when the slip parameter
approaches infinity while the perfect slip is deduced when the
slip parameter vanishes.

The remaining proposed boundary condition is the vanish-

ing couple stress on the surface of the sphere. This means that
the mechanical interaction at the boundary is equivalent to a
force distribution only [2]

njmji ¼ 0; on r ¼ r0: ð2:5Þ
The stress tensor tij and the couple stress tensor mij can be

written as [1,2]

tij ¼ �pdij þ 2ldij � 1

2
eijk msk;s; ð2:6Þ

mij ¼ mdij þ 4ðgxj;i þ g0xi;jÞ; ð2:7Þ
where m is the trace of the couple stress tensor. The deforma-

tion rate tensor dij and the vorticity vector xi are given by

dij ¼ 1

2
ðqi;j þ qj;iÞ xi ¼ 1

2
eijk qk;j: ð2:8Þ

Also, dij and eijk are denoting the Kronecker delta and the
alternating tensor, respectively.

Consider the steady creeping motion of an incompressible
couple stress fluid extending to infinity; that is, the fluid region
is assumed to be unbounded. We assume that a solid sphere of

radius, r0, is allowed to translate in an infinite region filled with
a couple stress fluid. The velocity of the sphere is supposed to
be constant of magnitude U directed along z-direction.

Working with the spherical polar coordinates (r, h, /), the
velocity vector can take the form

~q ¼ ðuðr; hÞ; vðr; hÞ; 0Þ: ð2:9Þ
The stream function w(r, h) can be used such that

uðr; hÞ ¼ �1

r2 sin h
@w
@h

; vðr; hÞ ¼ 1

r sin h
@w
@r

: ð2:10Þ

Thus, the governing equations (2.2) reduce to
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