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Abstract The present study concerned with the impact of velocity slip on MHD peristaltic flow

through a porous medium with heat and mass transfer is investigated. The relevant equations of

flow with heat and mass transfer have been developed. Analytic solution is carried out under

long-wavelength and small Reynolds number approximations. The expressions for the stream

function, temperature and concentration and the heat transfer coefficient are obtained. Numerical

results are graphically discussed for various values of physical parameters of interest. The velocity

and temperature field increase with an increase in the velocity slip parameter and permeability

parameter while it decreases with an increase in the Hartmann number.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The transportation of many biological fluids is carried out with
the help of naturally inherited mechanism inside the biological
systems which is called peristalsis. It is nature’s way of moving

the content within hollow muscular structures by successive
contraction of their muscular fibers. This principle is responsi-
ble for transport of biological fluids such as urine in the ureter,

chime in the gastrointestinal tract, semen in the vas deferens,
ovum in the fallopian tube, lymph transport in the lymphatic
vessels, blood pumps in the heart lung machine etc. In plant

physiology, the peristalsis is involved in phloem translocation
by driving a sucrose solution along tubules by peristaltic con-
tractions. The corrosive and noxious fluids can also be trans-
ported by peristalsis. Such flows in presence of heat transfer

also have great value. This process is useful for the analysis

of tissues, oxygenation and dialysis. Roller and finger pumps

also work under the peristaltic mechanism. The seminal
research on the peristaltic motion has been presented by
Latham [1] and Jaffrin and Shapiro [2]. Since then the various

experimental and theoretical studies have been presented in the
viscous and non-Newtonian fluids [3–10]. In view of the impor-
tance of oxygenation and dialysis, the peristaltic flows with

heat transfer have been also investigated [11–14]. Peristaltic
transport of a Carreau fluid in a compliant rectangular duct
was presented by Riaz et al. [15]. A mathematical study of
non-newtonian micropolar fluid in arterial blood flow through

composite stenosis was investigated by Ellahi et al. [16]. The
influence of heat and mass transfer on MHD peristaltic flow
through a porous space with compliant walls was investigated

by Srinivas et al. [17]. Ellahi [18] have reported the effects of
MHD and temperature dependent viscosity on the flow of
non-Newtonian nanofluid in a pipe. Very recently, the influ-

ence of Joule heating on MHD peristaltic flow of a nanofluid
with compliant walls was investigated by Gnaneswara Reddy
and Venugopal Reddy [19].
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In several applications the flow pattern corresponds to a
slip flow, and the fluid presents a loss of adhesion at the wetted
wall making the fluid slide along the wall. When the molecular

mean free path length of the fluid is comparable to the distance
between the plates as in nanochannels or microchannels, the
fluid exhibits non-continuum effects such as slip-flow as

demonstrated experimentally by Derek et al. [20]. Investiga-
tions of the effects of slip on the peristaltic motion have been
recently reported in [21–23].

The aim of the present paper is to discuss the velocity
slip effects on the MHD peristaltic transport of non-
Newtonian fluid in a porous space with heat and mass
transfer. Such an analysis is of great interest in bio-medical

research. The momentum, temperature equations and
concentration equations have been linearized under long-
wavelength and low-Reynolds number assumptions and

exact solutions for the flow fluid dynamical variables have
been derived. The contribution of several interesting param-
eters embedded in the flow system is examined by graphical

representations.

2. Formulation of the problem

The motion of heat and mass transfer peristaltic flow of a
Newtonian viscous fluid through a two-dimensional channel
of uniform thickness filled with a porous medium is consid-

ered. The motion in a channel is induced by imposing
moderate amplitude sinusoidal waves on the compliant
walls of the channel as shown in Fig. 1 and thus the walls
are defined by

y ¼ �gðx; tÞ ¼ � dþ a sin
2p
k
ðx� ctÞ

� �
: ð1Þ

where d is the mean half width of the channel, a is the ampli-

tude, k is the wavelength, t is the time and c is the phase speed
of the wave respectively.

The magnetic Reynolds number and induced magnetic field

are assumed to be small and neglected. Under these assump-
tions the governing equations of continuity, momentum, heat
transfer and mass transfer are as follows:
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where u, v are the components of velocity along x -and y direc-
tions, p is the pressure, l is the coefficient of viscosity of the

fluid, g is the gravitational acceleration, b is the coefficient of
thermal expansion, b* is the coefficient of concentration expan-
sion, r is the electrical conductivity of the fluid, k is the perme-

ability parameter, B0 is the applied magnetic field, a is the
thermal diffusivity, m is the kinematic viscosity, q is the density
of the fluid, f is the specific heat at constant pressure, k1 is the
chemical reaction of rate constant, T is the temperature, C is

the concentration and D is the coefficient of mass diffusivity,
KT is the thermal-diffusion ratio, and Tm is the mean
temperature.

The governing equation of motion of the flexible wall is
expressed as

L�ðgÞ ¼ p� p0: ð7Þ
where L� is an operator, which is used to represent the motion

of stretching membrane with viscosity damping forces such
that
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Here s is the elastic tension in the membrane, m is the mass per

unit area, C0 is the coefficient of viscous damping forces, B is
the flexural rigidity of the plate, H is the spring stiffness and
p0 is the pressure on the outside surface of the wall due to

the tension in the muscles and assume that p0 = 0.
The associated boundary conditions for the velocity slip,

temperature and concentration at the wall interface are given

by

u ¼ �h
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and the boundary conditions due to wall flexibility are
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Figure 1 Schematic diagram of the problem.
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