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Abstract Existing solutions of the problem of axisymmetric stagnation-point flow and heat trans-

fer on either a cylinder or a flat plate are for incompressible fluid. Here, fluid with viscosity propor-

tional to a linear function of temperature is considered in the problem of an unaxisymmetric

stagnation-point flow and heat transfer of an infinite stationary cylinder with non-uniform normal

transpiration U0(u) and constant heat flux. The impinging free-stream is steady and with a constant

strain rate �k. A reduction of Navier–Stokes and energy equations is obtained by use of appropriate

similarity transformations. The semi-similar solution of the Navier–Stokes equations and energy

equation has been obtained numerically using an implicit finite-difference scheme. All the solutions

aforesaid are presented for Reynolds numbers, Re ¼ �ka2=2t1, ranging from 0.01 to 100 for differ-

ent values of Prandtl number and viscosity-variation parameter and for selected values of transpi-

ration rate function, SðuÞ ¼ U0ðuÞ=�ka, where a is cylinder radius and t1 is the reference kinematic

viscosity of the fluid. Dimensionless shear-stresses corresponding to all the cases increase with the

increase in Reynolds number and transpiration rate function while dimensionless shear stresses

decrease with the increase in viscosity-variation parameter. The local coefficient of heat transfer

(Nusselt number) increases with increasing the transpiration rate function and Prandtl number.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.

Peer review under responsibility of Faculty of Engineering, Alexandria University.

Alexandria Engineering Journal (2016) 55, 1271–1283

HO ST E D  BY

Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com

http://dx.doi.org/10.1016/j.aej.2016.04.017
1110-0168 � 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2016.04.017&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.aej.2016.04.017
http://dx.doi.org/10.1016/j.aej.2016.04.017
http://www.sciencedirect.com/science/journal/11100168
http://dx.doi.org/10.1016/j.aej.2016.04.017
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

The study of impinging jet problems has been of considerable

interest during past decades because of great technical impor-
tance in many industrial applications, such as the drying of
papers and films, the tempering of glass and metal during

processing, the cooling of gas turbine surfaces and electronic
components, surface painting, the water show technology
and textile technology, pest-citing, de-icing, geology, biology,
astrophysics and Chemistry. Existing solutions of the problem

of axisymmetric stagnation-point flow and heat transfer on
either a cylinder or a flat plate are for viscous, incompressible
fluid. These studies were started by Hiemenz [1], who obtained

an exact solution of the Navier–Stokes equations governing
the two-dimensional stagnation-point flow on a flat plate,
and were continued by Homann [2] with an analogous axisym-

metric study and by Howarth [3] and Davey [4], whose results
for stagnation-point flow against a flat plate for asymmetric
cases were presented. Wang [5,6] was the first to find an exact
solution for the problem of axisymmetric stagnation-point

flow on an infinite stationary circular cylinder; this was contin-
ued by Gorla’s works [7–11], which are a series of steady and
unsteady flows and heat transfer over a circular cylinder in the

vicinity of the stagnation-point for the cases of constant axial
movement and the special case of axial harmonic motion of a
non-rotating cylinder. Cunning et al. [12] have considered the

stagnation-point flow problem on a rotating circular cylinder
with constant angular velocity; Grosch and Salwen [13] as well
as Takhar et al. [14] studied special cases of unsteady viscous

flow on an infinite circular cylinder. The most works of the
same types are the ones by Saleh and Rahimi [15] and Rahimi
and Saleh [16,17], which are exact solution studies of a
stagnation-point flow and heat transfer on a circular cylinder

with time-dependent axial and rotational movements, as well
as studies by Abbasi and Rahimi [18–21], which are exact solu-
tions of stagnation-point flow and heat transfer but on a flat

plate. Some existing compressible flow studies but in the stag-
nation region of bodies and by using boundary layer equations
include the study by Subhashini and Nath [22] as well as

Kumari and Nath [23,24], which are in the stagnation region
of a body, and works of Katz [25] as well as Afzal and Ahmad

[26], Libby [27], and Gersten et al. [28], which are all general
studies in the stagnation region of a body. Recently, Alizadeh
et al. [29–30] have considered the unaxisymmetric stagnation-

point flow and heat transfer of a viscous fluid on a stationary
and moving cylinder with time-dependent axial velocity and
magnetohydrodynamic effects. Sheikholeslami et al. [31–39]

have presented the thermal radiation and magnetohydrody-
namics and entropy generation and space dependent magnetic
field and ferrohydrodynamic of nanofluid and ferrofluid from
a plate and between two horizontal parallel plates and in a

semi annulus enclosure with viscous dissipation and free and
force convection. Also, Kandelousi [40] have considered the
effect of spatially variable magnetic field on ferrofluid flow

and heat transfer considering constant heat flux boundary con-
dition using finite element method. In a geological context,
Ribe and Smooke [41] presented a two-dimensional dynamical

model for melt extraction from a mantle plume and indicated
that the flow in the melt zone has the form of a stagnation-
point flow. Kellogg and Turcotte [42] also modeled the homog-
enization of the subducted oceanic crust with the depleted

mantle considering the combined problem of thinning and dif-
fusion at a stagnation-point flow. Studies of analytical investi-
gation of MHD Jeffery–Hamel nanofluid flow in non-parallel

walls were performed by Sheikholeslami et al. [43] who
obtained solutions using a fourth order Runge–Kutta method.

All the aforesaid studies were confined to the fluid with

constant viscosity. However, it is known that this physical
property may change significantly with temperature. To
predict accurately the flow behavior, it is necessary to take into

account this variation of viscosity. On assuming that the viscos-
ity of the fluid is linear functions of temperature, a semi-
empirical formula was proposed by Charraudeau [44] which
is appropriate for small Prandtl number. Studies of the effect

of variable viscosity on flow and heat transfer to a continuous
moving flat plate were performed by Pop et al. [45] and
Pantokratoras [46] who obtained similarity solutions consider-

ing that viscosity varies as an inverse function of temperature.

Nomenclature

a cylinder radius

r radial coordinate
z axial coordinate
u, w velocity components along (r,z)-axis
T temperature

qW wall heat flux
T1 freestream temperature
S(u) transpiration rate function

k thermal conductivity
�k freestream strain rate
f(g, u) function related to u-component of velocity

Nu Nusselt number
U0(u) transpiration
Re Reynolds number
Pr Prandtl number

P non-dimensional fluid pressure
p fluid pressure

h heat transfer coefficient

qw heat flow at wall

Greek symbols
g similarity variable
u angular coordinate

a thermal diffusivity
q fluid density
t kinematic viscosity

t1 reference kinematic viscosity
l viscosity of the fluid depending on the fluid tem-

perature
l1 viscosity of the ambient fluid

c viscosity-variation parameter
h(g, u) non-dimensional temperature
r shear stress
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