Accepted Manuscript

Dielectric relaxation phenomenon and conductivity in lead-free ceramics

Imen Krad, Nissrine Zaiter, Olivier Bidault, Adel Megrich, Mohamed El Maaoui

PII: S0921-4526(18)30414-9

DOI: 10.1016/j.physb.2018.06.022

Reference: PHYSB 310930

To appear in: Physica B: Physics of Condensed Matter

Received Date: 28 March 2018

Revised Date: 5 April 2018

Accepted Date: 19 June 2018

Please cite this article as: I. Krad, N. Zaiter, O. Bidault, A. Megrich, M. El Maaoui, Dielectric relaxation phenomenon and conductivity in lead-free ceramics, *Physica B: Physics of Condensed Matter* (2018), doi: 10.1016/j.physb.2018.06.022.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ILSU'ER	166N 9127-4328
PHYSICA) CONDENSED MATTER
	Envis 7 R. G. GOCER K. A. I. MORPH L. G. GOCER L. G. GOCER L. G. GOCER H. MICON H. MICON
Notatio offen at www.soenactivet.com ScienceDirect	hite dinna darea contocatejnyat

Dielectric relaxation phenomenon and conductivity in Lead-free ceramics

Imen. Krad^{a, c*}, Nissrine. Zaiter^b, Olivier. Bidault^c, Adel. Megrich^a, Mohamed. El Maaoui^a

^a Laboratory of Applied Mineral Chemistry, URCMA, University of Tunis El Manar, 2092 Tunis, Tunisia

^b Institute of Molecular Chemistry, ICMUB, UMR 5260 CNRS, University of Burgundy Franche Comte, 9 Avenue Alain-Savary, BP 47870, 21078 Dijon cedex, France

^c Laboratory of Interdisciplinary Carnot, ICB, UMR 6303 CNRS, University of Burgundy Franche Comte, 9 Avenue Alain Savary, BP 47870, 21078 Dijon cedex, France

Tel: 0033635219575 e-mail: kradimen@gmail.com

Abstract

Relaxation phenomena and electric conductivity of (1-x) KNbO₃-xK_{0.5}Bi_{0.5}TiO₃ system where x=0, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3 have been studied at high temperature. A relaxation behavior was observed in temperature range $400K \le T \le 550K$ for orthorhombic solid solutions at room temperature. The activation energy (E_a) of this phenomenon was range from 0.68 eV for x = 0 to 0.489 eV for x = 0.075 with τ_0 =10⁻¹³ s. The relaxation was attributed to hopping of oxygen vacancies for solid solutions x≤0.075. Substitution by K_{0.5}Bi_{0.5}TiO₃ does not affect the electrical conductivity of KNbO₃ too much, while the mobility of species such as oxygen vacancies and oxygen ions allow the increase of the conductivity σ_{ac} at high temperatures.

Keywords: (1-x)KNbO₃-xK_{0.5}Bi_{0.5}TiO₃, relaxation phenomenon, electric conductivity, oxygen vacancies

1. Introduction

The synthesis of lead-free materials is a research area that is followed by the majority of researchers around the world because of unequalled properties of the reference piezoelectric compound: PbZrTiO₃ (PZT). Many research studied the structural and physical properties for the $PbZr(1-x)Ti_XO3$ family [1,2]. A development of new materials competing with the PZT in their dielectric and piezoelectric properties need the search for new combinations of ions or substitutions of the different ions in the cationic sites of the crystal lattice. ABO₃ perovskites were renewed many attention for here interesting physical properties. A substitution of either A-ions or/and B-ions present a revolution in innovation to the electronics industry such as dvnamic access memory, sensor, actuator, voltage controlled oscillators and telecommunication technologies [3]. Lead free KNbO₃ and K_{0.5}Bi_{0.5}TiO₃ compounds have been developed in recent years due to their dielectric and piezoelectric properties [4-7]. A high relative density about 98% was obtained for KNbO₃ and K_{0.5}Bi_{0.5}TiO₃ ceramics syntheses by hydrothermal method [8, 9] and the dielectric measurements of these ceramics at room temperature reported a good ε_r about 540 and 780 respectively with low tang $\delta \simeq 0.03$ at 1kHz frequency. This results were are better than those obtained by other synthetic chemical voices such as solid state[10, 11], sol-gel [12, 13] for they both perovskites. The A/B sites substitution of KN was effected in order to improve the structural and dielectric properties at high temperature. A relaxation phenomenon and dielectric conductivity were reported in many complex ceramics [14-16] at a function of temperature. In this article, we report dielectric relaxation and electrical conductivity response of (1-x)KNbO₃- xK_{0.5}Bi_{0.5}TiO₃ (1Download English Version:

https://daneshyari.com/en/article/8160340

Download Persian Version:

https://daneshyari.com/article/8160340

Daneshyari.com