Accepted Manuscript

Influence of Antimony doping on the electronic, optical and luminescent properties of ZnO microrods

A.M. Alsmadi, B. Salameh, Lei L. Kerr, K.F. Eid

PII: S0921-4526(18)30453-8

DOI: 10.1016/j.physb.2018.07.007

Reference: PHYSB 310961

To appear in: Physica B: Physics of Condensed Matter

Received Date: 2 June 2018
Revised Date: 5 July 2018
Accepted Date: 6 July 2018

Please cite this article as: A.M. Alsmadi, B. Salameh, L.L. Kerr, K.F. Eid, Influence of Antimony doping on the electronic, optical and luminescent properties of ZnO microrods, *Physica B: Physics of Condensed Matter* (2018), doi: 10.1016/j.physb.2018.07.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influence of Antimony doping on the electronic, optical and luminescent properties of ZnO microrods

A. M. Alsmadi^{1*}, B. Salameh^{1**}, Lei L. Kerr², and K. F. Eid³

Abstract

We synthesized Sb-doped ZnO (ZnO:Sb) microrods with varying Sb content and carried out a systematic study on their structural, optical and photoluminescent properties. Scanning electron microscopy revealed a hexagonal morphology of the as grown microrods, while the x-ray photoelectron spectroscopy (XPS) and Ultra Violet-Visible spectroscopy results indicated the incorporation of Sb dopants into the ZnO lattice. XPS and x-ray diffraction analysis revealed that all ZnO:Sb microrods with different Sb doping possessed typical wurtzite structure and had no other impurity phases. Furthermore, the XPS results showed that Sb ions are in an oxidation state between 3+ and 5+, indicating the existence of an acceptor complex in the ZnO:Sb microrods. In addition, another deep acceptor originated form 2+ oxygen vacancies was identified. Photoluminescence (PL) measurements confirmed the formation of the (Sb_{Zn}-2V_{Zn}) shallow acceptor states in the ZnO:Sb microrods. PL measurements at low temperature showed strong violet luminescence, which is originated from free-electron to acceptor level (FA) transitions. The FA emission showed a slight blue shift with the increase of the temperature. As a result of Sb incorporation into the ZnO lattice, we observed a red shift in the ZnO:Sb nanowires' energy gap with the increase of Sb doping. This red shift is attributed to the formation of acceptor levels inside the ZnO band gap. The identification of this acceptor level in these homogeneous single-phase ZnO:Sb microrods provides strong promise of p-type conductivity of ZnO by Sb doping.

Keywords: ZnO, Sb doped ZnO, XPS spectroscopy, photoluminescence (PL), acceptor complex, energy gap, red shift, p-type conductivity.

¹Department of Physics, Kuwait University, 13060 Safat, Kuwait

²Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio 45056, USA

³Department of Physics, Miami University, Oxford, Ohio 45056, USA

^{*}Corresponding author electronic mail: abdel.alsmadi@ku.edu.kw

^{*}On leave from the Department of Physics, The Hashemite University, Zarqa, Jordan

^{**}On leave from the Department of Applied Physics, Tafila Technical University, Tafila, Jordan

Download English Version:

https://daneshyari.com/en/article/8160447

Download Persian Version:

https://daneshyari.com/article/8160447

<u>Daneshyari.com</u>