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A B S T R A C T

The variation of total energy, entropy, Helmoltz free energy due to the application of a static electric field is
calculated and discussed, under suitable conditions, in the case of a dielectric with either anisotropic or nonlinear
response. The proposed approach starts from Fröhlich’s theory of dielectric thermodynamics and, by analyzing
its assumptions, provides a method to generalize it. The obtained relationships can be employed for describing
the thermodynamics of different classes of dielectric materials, also in experimental investigations. Specifically,
the anisotropy and nonlinearity conditions are considered and relative examples are indicated and discussed.

1. Introduction

The issue of developing a thermodynamics of ideal dielectrics was
considered in few seminal studies carried out by important physicists.
Although relationships connecting dielectric and thermodynamic quan-
tities were proposed in the thirties and in the forties in the context of
the studies on the electrocaloric effects [1,2], the first general theory
was developed by H. Fröhlich [3,4], followed by R. Becker [5], L. Lan-
dau [6], V. Daniel [7], C. Böttcher [8], and B. Scaife [9]. These last
ones provided considerations which are still based on the first trea-
tise of Fröhlich: he obtained specific relationships which, under suit-
able conditions, correlate the physical quantities usually involved in
dielectrics- i.e. static dielectric function 𝜀s, dielectric displacement field
D, and applied electric field E- with the main thermodynamic state
functions- i.e. total thermodynamic energy U, entropy S, and Helmholtz
free energy F. Fröhlich demonstrated that, when a reversible isothermal
transformation is considered, the variation of the main thermodynamic
potentials can be written as

U(T,𝐄) = U0(T) + UE(T,𝐄), (1a)

S(T,𝐄) = S0(T) + SE(T,𝐄), (1b)

F(T,𝐄) = F0(T) + FE(T,𝐄), (1c)

where T is the considered temperature, U0, S0, F0 are the change
of respectively thermodynamic total energy, entropy, Helmholtz free
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energy in absence of field, while UE, SE, FE are their respective field-
induced change. We note that the condition of considering reversible
transformations requires that at each temperature the involved physi-
cal quantities do not depend on the time [10]; this implies that, strictly
speaking, relationships (1) hold for static fields. It is worth noting that
the field-dependent terms of (1) also display a dependence on temper-
ature which can not be decoupled from the dependence on the field:
this is due to the intrinsic dependence of the dielectric permittivity on
the temperature. In his treatise Fröhlich starts from the electromag-
netic energy Ue correlated with the application of E to an ideal loss-free
dielectric medium. Therefore Ue, for unit of volume, is given by

Ue =
1
2
𝐄 ·𝐃. (2)

When D changes with the temperature T, from Eq. (2) we can obtain
the energy difference (per unit volume) of the considered dielectric,
although such relationship apparently does not contain thermodynamic
quantities. If the variation of D is due to some thermodynamic pro-
cess occurring to the dielectric, the effective energy provided by the
above expression will depend on the feature of the occurring transfor-
mation. In particular Becker stressed that for an adiabatic process the
variation of electric energy dUe coincides with the variation of the total
thermodynamic energy dU [5]; this implies that when an isothermal
process is considered dUe coincides with the variation of the Helmholtz
free energy dF [3–5,11]. We note that in this treatise the volume vari-
ation of the system is assumed negligible (no electrostriction effects
are considered), therefore the changes of Helmholtz and Gibbs free
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energies coincide. While adiabatic conditions are difficult to be treated
[5], isothermal transformations were more easily treated and discussed
by the Fröhlich’s theory. In his treatise, Fröhlich considers a system
whose volume is maintained constant and the sole independent vari-
ables are the temperature T and the external electric field E. Moreover,
he assumes D linearly depending on E, D = 𝜀 E (we here employ the
absolute dielectric function 𝜀 ≡ 𝜀0𝜀s, where 𝜀0 is the vacuum dielec-
tric permittivity and 𝜀s is the static relative permittivity), with the fur-
ther hypotheses of considering both an isotropic medium and a scalar
approximation. In such conditions, relations (1) are expressed by

U(T,E) = U0(T) +
1
2

(
𝜀+ T 𝜕𝜀

𝜕T

)
E2, (3a)

S(T,E) = S0(T) +
1
2
𝜕𝜀

𝜕T
E2, (3b)

F(T,E) = F0(T) +
1
2
𝜀E2, (3c)

which are the Fröhlich’s thermodynamic relationships [3,4], where the
energy, entropy, free energy of the dielectric as provided by such
expressions are Fröhlich total energy, Fröhlich entropy, Fröhlich free energy
(all for volume unit) [12]. We note that (3) show that the standard
expression (2) actually does not provide the total energy but just the
free energy. The form of (3) is very transparent: namely it allows to
immediately highlight the connection between dielectric and thermody-
namic variables. Even better, such a connection is expressed through a
simple mathematical form, where the free energy is proportional to the
dielectric susceptibility and the entropy is proportional to its derivative.
However, the elegant formulation of (3) requires the above-mentioned
specific hypotheses. Summarizing, beyond the condition of consider-
ing a loss-free (ideal) dielectric, Fröhlich adopts four assumptions, two
assumptions about the thermodynamics of the considered process, i.e.

- reversibility,
- isothermal conditions,

and two assumptions about the features of the dielectric, i.e.

- linear dependence of D on E,
- scalar approximation (isotropic dielectric).

We note that the requirement of considering an independent-
on-time field (static condition) is a consequence of the reversibility
assumption and Boltzmann’s ergodic conditions. In fact, in the assumed
hypothesis the considered thermodynamic potentials are also state func-
tions [10,13]. On the other hand, the dielectric assumptions concern the
specific features of the dielectric response, which is determined by the
considered material.

Actually, mathematical relationships correlating thermodynamic
and dielectric quantities were theoretically and experimentally treated
in the context of electrocaloric, pyroelectric and piezocaloric effects
[2,14–18]. In these studies the dependence of scalar thermodynamic
variables on vectors and tensors -electric and magnetic fields, suscep-
tivity and susceptibility tensors, dielectric displacement and magnetiza-
tion fields, stresses and strains tensors, etc.- was extensively discussed
[6,13,15,16,19], this allows us, inter alia, to extend Maxwell’s ther-
modynamic relations for media with dielectric, magnetic, and elastic
anisotropies [15,20]. However, although the significance of the Fröh-
lich’s thermodynamic approach, whose relationships (3) were published
in 1949 [3], was emphasized by founders of the physics of dielectrics
[5–7,9], no experimental studies specifically involving his theory have
been accomplished for more than forty years. The first experimental
uses of Fröhlich’s equations and interpretation have been carried out
in 2003 by GB. Parravicini et al. for the investigation of melting pro-
cesses in metallic nanoparticles [21–23]. Subsequently, Fröhlich’s argu-
ments have been applied e.g. on nematic compounds [24–28], molec-
ular crystals [29,30], ferroelectric and glassy perovskites [12,31,32],

polar glasses [33], polar and glass-forming liquids [34–38], polymeric
films [39], enzymes [40].

The use of Fröhlich’s theory in describing so different systems
raises the issue about the conditions under which the above-listed four
assumptions are effectively satisfied. Actually, in experimental domain
the validity of Fröhlich relationships was demonstrated in less strin-
gent conditions with respect to the formal ones. Namely, relation-
ships (3) were experimentally found to hold in quasi-equilibrium states
[12,29,30] and quasi-static conditions [21–23,38], i.e. they still exper-
imentally hold when relaxation phenomena are negligible: this implies
that quasi-static fields (frequencies until ≃ 100 MHz [24]) can be han-
dled. On the other hand, the validity of hypotheses on dielectric fea-
tures strongly depends on the investigated material. Namely, the inves-
tigation of systems whose response is intrinsically directional such as
anisotropic crystals [12,32] and nematic compounds [24–27], naturally
rises the problem of a formulation of (3) taking into account anisotropy.
Furthermore, the study of dielectric dipolar liquids [34], recalls that
the linearity assumed by Fröhlich strictly holds only for E → 0, making
mandatory to consider the problem of nonlinear corrections.

In this work we address these issues in order to treat a ther-
modynamic description of anisotropic and nonlinear dielectrics. The
employed approach is based on a generalization of Fröhlich’s thermo-
dynamic theory for dielectrics. Namely, we report the steps to obtain
the equivalent of expressions (3) when either anisotropy or nonlinear-
ity are not negligible. The obtained results permit not to assume the two
Fröhlich’s hypotheses about the features of the dielectric. Therefore, the
final generalized relationships provide a useful tool to be applied in the
evaluation of total energy, entropy, and free energy from experimental
data of a generic dielectric material. We will discuss the physical mean-
ing of the obtained equations and provide examples of physical systems
where they can be usefully employed in experimental investigations.

2. Anisotropic linear media

In developing the calculations we consider all physical quantities for
unit of volume. First we assume a linear correlation between the applied
static electric field E and the displacement vector D, as in Fröhlich’s
relationships. In the most general case, 𝜀 of (4) is a 2-rank tensor, i.e.
𝜺 ≡ 𝜀ij. So, the relation between E and D has the general form D = 𝜺 ·E,
i.e.

Di =
∑

j
𝜀ijEj (4)

for i, j = 1, 2, 3, with the x, y, z components of the field labeled as
Ex = E1, Ey = E2, Ez = E3, and similarly for D. For treating thermody-
namic transformations, we consider the variation of Ue as provided by
Ref. [4]:

dUe = 𝐄 · d𝐃, (5)

which is the energy variation of the dielectric (per unit volume) if D is
infinitesimally varied. By combining Eq. (5) with the first principle of
thermodynamics, we can obtain the energy variation dU for a reversible
transformation, i.e. during a process where the field or the temperature,
or both, are varied, per unit volume, in the form

dU = dQ + dUe = dQ + 𝐄 · d𝐃. (6)

where dQ is the amount of exchanged heat (for unit of volume) during
the considered reversible transformation. We note that the structure of
(6) is analogous to the relationship giving the first principle of thermo-
dynamics for a gas, dU = dQ − pdv, if E and D are respectively replaced
by the pressure p with changed sign and the volume v [4]. The differen-
tial of the dielectric displacement vector D in the case of an anisotropic
dielectric can be written as

dDi = d

(∑
j
𝜀ijdEj

)
=

∑
j

(
𝜀ijdEj + Ej

𝜕𝜀ij

𝜕T
dT

)
. (7)
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