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A B S T R A C T

Mermin-Wagner excludes spontaneous (staggered) magnetization in isotropic ferromagnetic (antiferromagnetic)
Heisenberg models at finite temperature in spatial dimensions d ≤ 2. While the proof relies on the (microscopic)
Bogoliubov inequality, here we illuminate the theorem from an effective field theory point of view. We estimate
the crossover temperature Tc and show that, in weak external fields H, it tends to zero: Tc ∝

√
H (d = 1) and Tc∝ 1/|ln H| (d = 2).

1. Introduction

In the article by Mermin and Wagner [1], absence of spontaneous
symmetry breaking in isotropic Heisenberg models at finite tempera-
ture in spatial dimensions d ≤ 2 is demonstrated by considering the
magnetization or staggered magnetization in weak external magnetic or
staggered fields. When the external field tends to zero, while the finite
temperature is kept fixed, the (staggered) magnetization tends to zero
as well. The theorem states that the functional dependence between
(staggered) magnetization m and weak external field H is characterized
by a power law in d = 1, while in d = 2 the connection is logarithmic,

m < c1
H1∕3

T2∕3 (d = 1) ,

m < c2
1√

T
√|ln H| (d = 2) . (1.1)

Note that it is irrelevant whether ferromagnetic or antiferromagnetic
interactions are considered.

The Mermin-Wagner theorem is based on a microscopic description
of ferro- and antiferromagnets, and a crucial ingredient in its proof is
the Bogoliubov inequality [2] that turned out to be very useful in dif-
ferent contexts. In fact, the article by Hohenberg [3] on the absence of
conventional superfluid or superconducting order in d = 1 and d = 2 is
also based on the Bogoliubov inequality.

Alternatively, systems exhibiting collective magnetic behavior can
be analyzed within effective Lagrangian field theory – this is the method
the present study is based upon. The question then arises of how the
Mermin-Wagner theorem reflects itself in the effective field theory point
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of view, and how effective and microscopic perspectives are related to
each other.

In analogy to the microscopic approach, we consider the (staggered)
magnetization as a function of temperature and external field: m(T, H).
For a given constant field strength H, the (staggered) magnetization
decreases as temperature grows and eventually becomes zero in the
effective field theory description. We use the condition m(Tc, Hc) = 0
to estimate the crossover temperature Tc in terms of the external field.
Although the effective theory operates at low temperatures, the extrap-
olation of the (staggered) magnetization curves to the point m = 0 still
provides reasonable estimates for Tc.

In three spatial dimensions, Tc tends to a finite value in the
limit H → 0: this defines the Curie (or Néel) temperature where
(anti)ferromagnetic order breaks down in a second order phase transi-
tion. Below Tc – in the absence of the external field – spontaneous mag-
netic order exists. Since we are in three spatial dimensions, Mermin-
Wagner does not apply.

In lower spatial dimensions, however, the situation is qualitatively
different: the crossover temperature Tc, estimated from effective field
theory, tends to zero in the limit H → 0. Accordingly, no spontaneous
magnetization or spontaneous staggered magnetization can exist at
finite temperatures in d ≤ 2. This is how the Mermin-Wagner theorem
manifests itself on the effective field theory level – this is our first
insight.

Our second insight is that the functional dependence between Tc
and Hc that we obtain from the condition m(Tc, Hc) = 0, remarkably,
is the same as in the Mermin-Wagner inequalities (1.1): in d = 1 (and
d = 3) we get a power law, Tc ∝ √

Hc, while in d = 2 we find Tc ∝ 1/|ln
Hc|.
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Finally, our third insight concerns universality: as in the case of
the Mermin-Wagner inequalities, the functional dependence between
Tc and Hc is universal: it is a consequence of the spatial dimension only
and does not depend on whether ferromagnetic or antiferromagnetic
order is considered.

We also explore the interplay between effective and microscopic
description by deriving approximate upper bounds for the (staggered)
magnetization at the estimated crossover temperatures. Apart from the
cases d = 1, 2, we also include ferromagnets and antiferromagnets in
three spatial dimensions. As it turns out, the approximate upper bounds
for the (staggered) magnetization are not restrictive. Nevertheless, we
briefly report our findings in an appendix.

The rest of the paper is organized as follows. In Section 2 we reca-
pitulate the essentials of the Mermin-Wagner theorem, and then show
how the theorem manifests itself in the effective field theory descrip-
tion. The connection between crossover temperature and external field
is derived in Section 3 for ferromagnets and antiferromagnets in d = 1,
2, 3. Finally, Section 4 contains our conclusions. While Appendix A con-
tains some technical details, approximate upper bounds for the (stag-
gered) magnetization for the various systems of interest are reported in
Appendix B.

2. Mermin-Wagner theorem

2.1. Rigorous statement on the microscopic level

The theorem by Mermin and Wagner [1] states that there can be no
spontaneous symmetry breaking at finite temperature in the isotropic
Heisenberg model,

0 = −1
2
∑
ij

Jij ⃖⃗Si · ⃖⃗Sj , (2.1)

in spatial dimensions less or equal two. The theorem includes both fer-
romagnetic (Jij > 0) and antiferromagnetic (Jij < 0) order.

More concretely, the authors consider the quantity m(T, H): the
(staggered) magnetization per particle as a function of temperature and
an external field H. In the case of the ferromagnet, this is the magnetic
field that points into the z-direction,

 = 0 −
∑

i
Sz

i H , (2.2)

while for antiferromagnetic coupling,

 = 0 −
∑

i
(−1)i Sz

i H , (2.3)

we are dealing with a staggered field.
In the limit H → 0, while keeping T constant, the (staggered) mag-

netization tends to zero,

lim
H→0

m(T,H) = 0 (d ≤ 2) . (2.4)

Accordingly, spontaneous symmetry breaking is ruled out at finite tem-
perature. The proof is based on the Bogoliubov inequality that leads to
the explicit relations

m < c1
H1∕3

T2∕3 (d = 1) ,

m < c2
1√

T
√|ln H| (d = 2) , (2.5)

provided that the external field H is weak. Although the proof in the
original article refers to the Heisenberg model, it can be extended to the
XY model or the Hubbard model, among others (see, e.g., Refs. [4–7]).
Furthermore, the analog of the Mermin-Wagner theorem that emerges
in relativistic field theories was first proven and discussed by Coleman
in Ref. [8].

2.2. Manifestation of Mermin-Wagner on the effective level

The systems we address in this study are ferro- and antiferromag-
netic films (d = 2) as well as ferromagnetic spin chains (d = 1). We also
include ferro- and antiferromagnetic crystals (d = 3) in order to empha-
size the qualitative difference with respect to the physics in lower spa-
tial dimensions. However, we do not consider antiferromagnetic spin
chains, since they are more subtle both on the effective and microscopic
level.1

Complementary to the microscopic description where the Mermin-
Wagner proof is based upon, we use effective field theory to explore the
low-temperature properties of ferro- and antiferromagnets. The method
relies on the fact that the spin-waves – the collective excitations – are
the relevant degrees of freedom at low temperatures.2 The basic input
we need is the dispersion relation of the spin waves in the external field.
Irrespective of the spatial dimension, the leading term for ferromagnetic
spin waves is quadratic,

𝜔(⃖⃗k,H) = 𝛾 ⃖⃗k2 + H , (2.6)

while the leading term for antiferromagnetic spin waves takes the rela-
tivistic form

𝜔(⃖⃗k,H) =
√

v2 ⃖⃗k2 + 𝛾sH . (2.7)

The external field ⃖⃖⃗H = (0,0,H) is aligned with the (staggered) magneti-
zation vector ⃖⃖⃗m(T,H) = (0,0,m(T,H)). The constants 𝛾 , 𝛾 s and v depend
on the microscopic parameters S (spin quantum number), J (exchange
integral), and a (lattice constant), as well as on the geometry of the
system. Below, in the formulas for the (staggered) magnetization, we
express the constants 𝛾 , 𝛾 s, v in terms of microscopic parameters for
each system under consideration.

With the dispersion relation we calculate the free energy density at
one-loop order as

z = z0 + n T
(2𝜋)d ∫ ddk ln

(
1 − e−𝜔(⃗k,H)∕T

)
, (2.8)

where z0 is the energy density of the vacuum and n is the number of
independent spin-wave excitations: in ferromagnets we have n = 1, in
antiferromagnets we have n = 2. The (staggered) magnetization is then
obtained via

m(T,H) = −𝜕z(T,H)
𝜕H

. (2.9)

For the various systems of interest we have [11–15].

• Ferromagnetic spin chains

m(T,H) = S − 1
2𝜋1∕2J1∕2S1∕2 T1∕2

∞∑
n=1

e−nH∕T

n1∕2 . (2.10)

• Ferromagnetic films

m(T,H) = S − 1
4𝜋JS

T
∞∑

n=1

e−nH∕T

n
. (2.11)

• Simple cubic ferromagnetic crystals

m(T,H) = S − 1
8𝜋3∕2J3∕2S3∕2 T3∕2

∞∑
n=1

e−nH∕T

n3∕2 . (2.12)

• Antiferromagnetic films

m(T,H) = m0 +
m3∕2

0 v
8𝜋𝜌3∕2

√
H + m0

2𝜋𝜌
T ln

[
1 − exp

(
−

vm1∕2
0

𝜌1∕2

√
H

T

)]
.

(2.13)

1 Antiferromagnetic spin chains will be analyzed elsewhere.
2 Pedagogical outlines of the effective Lagrangian method with applications

to condensed matter systems are, e.g., Refs. [9,10].
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