Accepted Manuscript

Structural and optical properties of ZnO thin films prepared by RF sputtering at different thicknesses

Ahmed H. Hammad, M. Sh Abdel-Wahab, Sajith Vattamkandathil, Akhalakur Rahman Ansari

PII: S0921-4526(18)30281-3

DOI: 10.1016/j.physb.2018.04.017

Reference: PHYSB 310833

To appear in: Physica B: Physics of Condensed Matter

Received Date: 26 March 2018
Revised Date: 11 April 2018
Accepted Date: 12 April 2018

Please cite this article as: A.H. Hammad, M.S. Abdel-Wahab, S. Vattamkandathil, A.R. Ansari, Structural and optical properties of ZnO thin films prepared by RF sputtering at different thicknesses, *Physica B: Physics of Condensed Matter* (2018), doi: 10.1016/j.physb.2018.04.017.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Structural and optical properties of ZnO thin films prepared by RF sputtering at different thicknesses

Ahmed H. Hammad^{a,b*}, M. Sh. Abdel-wahab^{a,c}, Sajith Vattamkandathil^a,

Akhalakur Rahman Ansari^a

- a Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- b Electron Microscope and Thin Films Department, Physics Division, National Research Centre, Dokki, Giza, Egypt.
- c Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt.

Abstract

Hexagonal nanocrystallites of ZnO in the form of thin films were prepared by radio frequency sputtering technique. X-ray diffraction analysis reveals two prominent diffraction planes (002) and (103) at diffraction angles around 34.3 and 62.8°, respectively. The crystallite size increases through (103) plane from 56.1 to 64.8 Å as film thickness changed from 31 nm up to 280 nm while crystallites growth through (002) increased from 124 to 136 Å as film thickness varies from 31 to 107 nm and dropped to 115.8 Å at thickness 280 nm. The particle shape changes from spherical to longitudinal form. The particle size is 25 nm for films of thickness below 107 nm and increases at higher thicknesses (134)

Download English Version:

https://daneshyari.com/en/article/8160503

Download Persian Version:

https://daneshyari.com/article/8160503

<u>Daneshyari.com</u>