Accepted Manuscript

Effects of the temperature and pressure on the electronic and optical properties of an exciton in $GaAs/Ga_{1-x}Al_xAs$ quantum ring

K. El-Bakkari, A. Sali, E. Igraoun, A. Rezzouk, N. Es-Sbai, M. Ouazzani Jamil

PII: S0921-4526(18)30174-1

DOI: 10.1016/j.physb.2018.03.010

Reference: PHYSB 310771

To appear in: Physica B: Physics of Condensed Matter

Received Date: 19 November 2017

Revised Date: 3 March 2018 Accepted Date: 5 March 2018

Please cite this article as: K. El-Bakkari, A. Sali, E. Iqraoun, A. Rezzouk, N. Es-Sbai, M. Ouazzani Jamil, Effects of the temperature and pressure on the electronic and optical properties of an exciton in $GaAs/Ga_{1-x}Al_xAs$ quantum ring, *Physica B: Physics of Condensed Matter* (2018), doi: 10.1016/j.physb.2018.03.010.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effects of the temperature and pressure on the electronic and optical properties of an exciton in $GaAs/Ga_{1-x}Al_xAs$ quantum ring

K. El-Bakkari^{a*}, A. Sali^a, E. Iqraoun^a, A. Rezzouk^a, N. Es-Sbai^b, M. Ouazzani Jamil^c

ABSTRACT

Using a variational approach, we have calculated the binding energies $(E_{1s,2s}^b)$ and interband emission energy (E_{ph}) of an exciton confined in $GaAs/Ga_{1-x}Al_xAs$ quantum rings (QRs) structures under effects of the temperature and pressure, in the effective mass approximation. We have taken into consideration the difference in the effective masses of the charge carriers in two materials, well and barrier. The results that we have obtained show clearly that $E_{1s,2s}^b$ and E_{ph} are influenced by the structure geometries of QR (height H, radial thickness ΔR and potential barrier), the temperature and pressure. Indeed, with a smaller geometric parameter, $E_{1s,2s}^b$ and E_{ph} become higher due to the improvement in confinement of the charge carriers. We have also observed that for a given value of the temperature, the pressure leads to an increasing of the $E_{1s,2s}^b$ and E_{ph} , and the latter quantities are decreasing with temperature. In addition, these variations of the $E_{1s,2s}^b$ and E_{ph} under the external perturbations are more remarkable in small H for fixed ΔR , and for larger ΔR for a given value of the H, because for the choice of a finite height of the barrier in the z direction and an infinite confinement in ρ direction.

Keywords: Exciton, Quantum ring, Temperature, Pressure, Binding energy, Interband emission energy

1. Introduction

In nanostructures, the charge carriers are possibly to confine in one directions (quantum wells), two directions (quantum wires) and tree directions (quantum dots). Recently the researches have rendered possible the realization of nanostructures in the geometry of a ring named quantum rings (QRs) [1], due of their significance properties (optical and electronic) the researchers have increased the attention to study this kind of quantum dots, which are of interest for potential device applications [2,3]. Experimentally, different techniques of growth have been utilized to manufacture the QR such as droplet epitaxy or the Koguchi method and

^a Department of Physics, Sidi Mohamed Ben Abdellah University, Faculty of Science, B.P.1796 Dhar El Mahraz, Fez, Morocco.

^b Sidi Mohammed Ben Abdellah University, Faculty of Science and Techniques, B.P. 2202 – Route d'Imouzzer, Fez, Morocco.

^c Université privée de Fès, Lotissement Quaraouiyine, Route d'Ain Chkef, 30000, Fès, Morocco.

^{*}Corresponding author: elbakkari.kamal@gmail.com

Download English Version:

https://daneshyari.com/en/article/8160654

Download Persian Version:

https://daneshyari.com/article/8160654

<u>Daneshyari.com</u>