ELSEVIER

Contents lists available at ScienceDirect

Physica B: Condensed Matter

journal homepage: www.elsevier.com/locate/physb

On the growth of CH₃NH₃PbI_{3-x}Cl_x single crystal and characterization

J. Su^{a,b,*}, W.F. Wang^{a,b}, Y. Lei^{a,b}, L. Zhang^{a,b}, L.H. Xu^{a,b}, D. Wang^c, D. Lu^{a,b}, Y. Bai^{a,b}

- a Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing 210044, China
- b School of Physics & Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
- ^c School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China

ARTICLE INFO

Keywords: CH₃NH₃PbI_{3-x}Cl_x Single crystal growth Perovskite solar cell Optical properties

ABSTRACT

In this paper, $CH_3NH_3PbI_{3-x}Cl_x$ crystal was grown by solution cooling method with CH_3NH_3I and $PbCl_2$ as raw materials. Lead compounds and $CH_3NH_3PbI_{3-x}Cl_x$ crystal with size about $6 \text{ mm} \times 4 \text{ mm} \times 2 \text{ mm}$ were obtained. The chemical reactions with different $CH_3NH_3I/PbCl_2$ ratios were analyzed. XPS shows the content of chlorine in $CH_3NH_3PbI_{3-x}Cl_x$ is about 0.91%. PXRD, FT-IR, Raman and absorbance spectra were used to study the structure and optical properties of $CH_3NH_3PbI_{3-x}Cl_x$ by comparing with $CH_3NH_3PbI_3$ crystal. The $CH_3NH_3PbI_{3-x}Cl_x$ crystal grown is of tetragonal structure with the lattice constants a=b=8.8165 Å, c=12.7920 Å and the bandgap value of 1.57 eV.

1. Introduction

The organic-inorganic hybrid perovskite materials $CH_3NH_3PbX_3$ (X = halide) have attracted great interest due to their superior optical and electrical properties. The solar cells based on these materials have the advantages of low cost, self-assembly and high power conversion efficiencies (PCEs), etc. [1–3]. Since the first organic-inorganic halide perovskite solar cell was reported, the PCEs have been upgraded from 3.81% to 21% within a few years [4–6]. In addition, by changing the components of the $CH_3NH_3PbX_3$, the band gap can be easily modified [7]. For example, a continuous band gap would be got by replacing halogen elements in $CH_3NH_3PbX_3$. In the previous reports the band gap value of $CH_3NH_3PbI_{3-x}Br_x$ or $CH_3NH_3PbBr_{3-x}Cl_x$ films varies with the change of x values [8–10].

Halide perovskite solar cells based on $CH_3NH_3PbI_{3-x}Cl_x$ has attracted much attention for its high power conversion efficiency (PCE). As a result, the fabrication of $CH_3NH_3PbI_{3-x}Cl_x$ films has also become a hot issue [11–16]. For solar cells, the carrier diffusion length is an important factor to evaluate its application potential. The carrier diffusion length of $CH_3NH_3PbI_{3-x}Cl_x$ films increases from 100 nm to over 1 μ m [17]. Some reports think the improvement in the electrical performance of $CH_3NH_3PbI_{3-x}Cl_x$ film should be due to the electronic effect by the doped CI [17,18], some think the CI is not doped in the film, while the presence of CI in the precursor can influence film formation, which leads to a larger crystalline domain [19,20]. Until now, all studies on the properties of $CH_3NH_3PbI_{3-x}Cl_x$ are based on $CH_3NH_3PbI_{3-x}Cl_x$ film. It is well known

that the single crystal is an ideal candidate for exploring its intrinsic structure and optical properties. In order to get accurate structural optical and electrical properties of CH₃NH₃PbI_{3-x}Cl_x, the growth of CH₃NH₃PbI_{3-x}Cl_x single crystal becomes necessary.

In this paper, different molar ratios of CH_3NH_3I and $PbCl_2$ were used to grow $CH_3NH_3PbI_{3-x}Cl_x$ single crystal. The growth conditions, structure and optical properties were analyzed.

2. Experiments

2.1. Synthesis of CH₃NH₃I

 CH_3NH_3I was synthesized by reacting methylamine (40 wt.%, aladdin) and hydroiodic acid (58 wt.%, aladdin) with the molar ratio of 1.2: 1 in an ice bath for 2 h whit stirring. Then it was dried at 100 °C for 24 h.

2.2. Crystal growth

 $CH_3NH_3PbI_3$ were grown as reported previously [21]. For the growth of $CH_3NH_3PbI_{3-x}Cl_x$ single crystal, firstly, CH_3NH_3I and $PbCl_2$ (99.99%, aladdin) were dissolved in 90 ml hydrochloride acid (37 wt. %, Alfa Aesar) with the molar ratio $CH_3NH_3I/PbCl_2$ 1: 3, 1: 1, 3: 1, 6: 1 respectively. Then these solutions were kept at 90 °C for 12 h, followed by cooling the solutions to 40 °C at the rate of 1-2 °C/d. Different color solid products were obtained, as shown in Fig. 1.

^{*} Corresponding author. School of Physics & Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China. E-mail addresses: sj007@nuist.edu.cn, zlj007@126.com (J. Su).

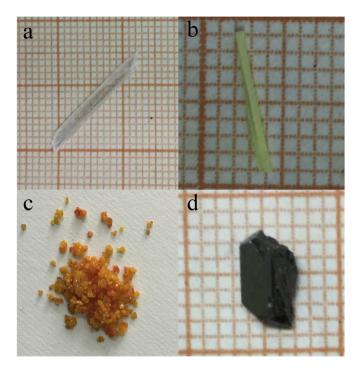


Fig. 1. Products obtained by solution cooling method with $CH_3NH_3I/PbCl_2$ ratio: (a) 1: 3, (b) 1: 1, (c) 3: 1, (d) 6: 1.

2.3. Measurements

Powder X-ray diffraction was performed on a Bruker D8 diffractometer using Cu-K α radiation in the 2θ range of $5\text{-}90^\circ$ with a step size of 0.02° . The steady-state absorption was recorded using UV2700 spectrophotometer in the range of 200 nm–800 nm. XPS spectra were measured by K-Alpha X-ray photoelectron spectrometer with monochromatized Al K α (1486.6eV) X-ray radiation source. The Fourier transform infrared spectroscopy was detected by Nicolet-460 spectrometer in the range of 400 cm $^{-1}$ - 4000 cm $^{-1}$. The Raman spectroscopy was detected by Renishaw inVia 2000 with excitation at 514 nm in the range of 50 cm $^{-1}$ - 4000 cm $^{-1}$. All the experiments were performed at room temperature.

3. Results and discussion

In order to define the phase of the products as Fig. 1 shown, the powder X-ray diffraction (PXRD) (Fig. 2) was used to characterize their structure. As Fig. 2 (a) shown, while the molar ratio of CH₃NH₃I/PbCl₂ is 1: 3, the X-ray diffraction peaks of the product [Fig. 1 (a)] are corresponding to orthorhombic PbCl₂, with space group Pnam (JCPDS No.26–1150), the lattice constants are determined as a = 7.6059 Å, b = 9.0274 Å, c = 4.5250 Å. As the molar ratio of CH₃NH₃I/PbCl₂ changes to 1:1, the PXRD of product [Fig. 1 (b)] is confirmed to be orthorhombic PbClI with space group Pnam (JCPDS No.73–0361), and a = 8.1423 Å, b = 9.6001 Å, c = 4.5749 Å. PbClI crystal has not been reported in the fabrication of CH₃NH₃PbI_{3-x}Cl_x films, and our results show PbClI crystal could be obtained as the I⁻/Cl⁻ ratio changes to a

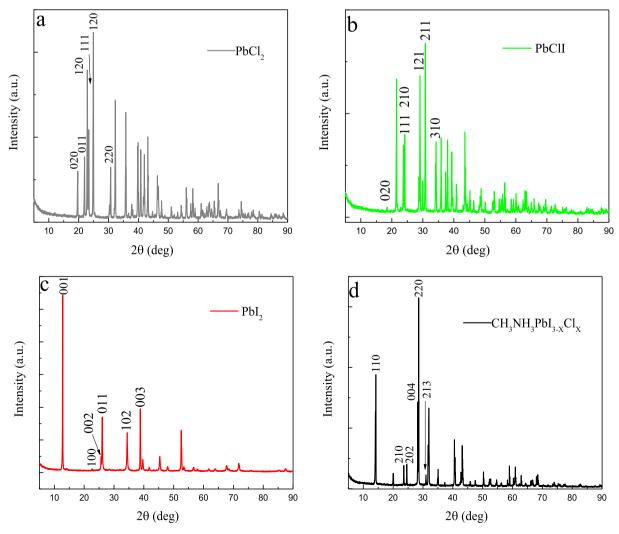


Fig. 2. Powder X-ray diffraction of crystals: (a) PbCl₂, (b) PbClI, (c) PbI₂, (d) CH₃NH₃PbI_{3-x}Cl_x.

Download English Version:

https://daneshyari.com/en/article/8160737

Download Persian Version:

https://daneshyari.com/article/8160737

Daneshyari.com