Author's Accepted Manuscript

Effect of Zn-site substitution with Ga on non-Fermi liquid behavior in PrIr₂Zn₂₀

R.J. Yamada, T. Onimaru, K. Uenishi, Y. Yamane, K. Wakiya, K.T. Mastumoto, K. Umeo, T. Takabatake

www.elsevier.com/locate/physb

PII: S0921-4526(17)30581-1

DOI: http://dx.doi.org/10.1016/j.physb.2017.09.004

Reference: PHYSB310230

To appear in: Physica B: Physics of Condensed Matter

Received date: 30 June 2017 Accepted date: 1 September 2017

Cite this article as: R.J. Yamada, T. Onimaru, K. Uenishi, Y. Yamane, K. Wakiya, K.T. Mastumoto, K. Umeo and T. Takabatake, Effect of Zn-site substitution with Ga on non-Fermi liquid behavior in PrIr₂Zn₂₀, *Physica B: Physics of Condensed Matter*, http://dx.doi.org/10.1016/j.physb.2017.09.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of Zn-site substitution with Ga on non-Fermi liquid behavior in PrIr₂Zn₂₀

R. J. Yamada¹, T. Onimaru¹, K. Uenishi¹, Y. Yamane¹, K. Wakiya^{1†}, K. T. Mastumoto^{1‡}, K. Umeo², T. Takabatake¹

¹Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan ²Cryogenics and Instrumental Analysis Division, N-BARD, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

Abstract

PrIr₂Zn₂₀ exhibits an antiferroquadrupolar (AFQ) order at $T_Q = 0.11$ K, above which temperature the electrical resistivity $\rho(T)$ shows an upward curvature and the magnetic specific heat divided by temperature C_m/T follows $-\ln T$ dependence. The non-Fermi Liquid (NFL) behaviors have suggested formation of a quadrupole Kondo lattice. In the present work, we have studied the effect of Ga substitution for Zn on the NFL behavior by the measurements of the specific heat C, the magnetic susceptibility χ , and ρ of PrIr₂Zn_{20-x}Ga_x ($0 \le x \le 0.25$). With increasing x, the characteristic temperature T_0 defined as the temperature where the magnetic entropy S_m reaches (3/4)Rln2 is increased by a factor of 3.5. Similarly, another characteristic temperature T_R below which $\rho(T)$ starts decreasing with the upward curvature increases with x by a factor of 1.2. The increments of both T_0 and T_R may be attributed to the possible split of the Γ_3 doublet by symmetry lowering of the Pr sites. Otherwise, the quadrupole Kondo lattice would be stabilized by the enhanced c-f hybridization due to the increment of the 4p electronic density and/or the chemical pressure effect.

Keywords: quadrupole, non-Fermi liquid, quadrupole Kondo effect

I. INTRODUCTION

Praseodymium-based intermetallic compounds $\Pr T_2 X_{20}$ (T = transition metal, X = Al, Zn, Cd) with $4f^2$ configuration have received remarkable attention because of exotic phenomena arising from the quadrupolar degrees of freedom [1]. In the cubic $\text{CeCr}_2\text{Al}_{20}$ -type structure, the Pr ion sits at a symmetric site with the cubic T_d point group [2]. The crystalline electric field (CEF) ground state of the Pr ions in most $\Pr T_2 X_{20}$ systems is the non-Kramers Γ_3 doublet, having no magnetic dipole but electric quadrupoles [3-7]. The active quadrupoles lead to a variety of phenomena at low

Download English Version:

https://daneshyari.com/en/article/8160854

Download Persian Version:

https://daneshyari.com/article/8160854

<u>Daneshyari.com</u>