
Contents lists available at ScienceDirect

Physica B

journal homepage: www.elsevier.com/locate/physb

Gapless spin excitations in the S = 1/2 Kagome- and triangular-lattice
Heisenberg antiferromagnets

Tôru Sakaia,b,⁎, Hiroki Nakanoa

a Graduate School of Material Science, University of Hyogo, Hyogo 678-1297, Japan
b National Institutes for Quantum and Radiological Science and Technology (QST) SPring-8, Hyogo 679-5148, Japan

A R T I C L E I N F O

Keywords:
Quantum spin systems
Frustration
Spin excitation
Quantum spin liquid

A B S T R A C T

The S = 1/2 kagome- and triangular-lattice Heisenberg antiferromagnets are investigated using the numerical
exact diagonalization and the finite-size scaling analysis. The behaviour of the field derivative at zero
magnetization is examined for both systems. The present result indicates that the spin excitation is gapless
for each system.

1. Introduction

Frustration in magnets is one of important topics in the field of the
strongly correlated electron systems. Among such magnets, the ka-
gome- and triangular-lattice antiferromagnets attract a lot of interests.
Since discoveries of several candidate materials of the kagome-lattice
antiferromanget; the herbertsmithite [1,2], the volborthite [3,4] and
the vesignieite [5], particularly, the study on this system has been
accelerated. The quantum spin-fluid behaviour of the system was
predicted by many theoretical studies [6–18]. The U (1) Dirac spin-
liquid theory [13] indicated a gapless spin excitation in the thermo-
dynamic limit, which has been supported by the recent variational
approach [19,20]. Our recent numerical diagonalization study [21] also
concluded that the system is gapless. On the other hand, the recent
density matrix renormalization group (DMRG) analyses [22–24]
suggested that the system has a finite spin gap even in the thermo-
dynamic limit and supported the Z2 topological spin-liquid picture [6].
Thus whether the S = 1/2 kagome-lattice antiferromagnet has a spin
gap or not is still theoretically controversial, although the recent
neutron scattering experiment of the single crystal of the herberts-
mithite [25,26] suggested that the system is gapless.

On the other hand, the triangular-lattice antiferromagnet is widely
believed to be gapless, based on the previous precise numerical analysis
[27]. Thus it would be interesting to compare the low-lying spin
excitation of the kagome-lattice antiferromagnet with the one of the
triangular lattice. In this paper, using the recently developed field-
derivative analysis based on the numerical diagonalization of finite-size
clusters [28], we try to approach the spin-gap issue of the S = 1/2

kagome-lattice antiferromagnet, as well as the triangular-lattice one.
When one examines field-derivatives of the magnetization within the
numerical data for finite-size systems, it is difficult to eliminate finite-
size effects completely. It is therefore required to reduce such effects by
means of a feasible way. Under these circumstances, the purpose of this
study is to present such a field-derivative analysis based on numerical
data whose finite-size deviations are presumably reduced. The kagome-
and triangular-lattice antiferromagnets have wide diversity of further
studies in various aspects. Under large magnetic fields, nontrivial
anomalous behaviours are observed in their magnetization curves;
however, the behaviours are different between the kagome- and
triangular-lattice antiferromagnets [29–31]. Such behaviours were also
examined in various frustrated magnets [32–36]. A randomness effect
in these systems was additionally examined [37,38]. Under such
circumstances, the present study tackles a fundamental issue concern-
ing properties of systems without effects owing to significantly large
fields and randomness are investigated.

2. Model and calculation

Using the numerical exact diagonalization of finite-size clusters
under periodic boundary condition, we investigate the S = 1/2 kagome-
and triangular-lattice Heisenberg antiferromagnets defined by the
Hamiltonian

∑ S S= · ,
i j

i j
〈 , 〉


(1)

where site i is assumed to be the vertices of the kagome or triangular
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lattice. Here, i j〈 , 〉 runs over all the nearest-neighbor pairs on each
lattice. For an N-site system, we consider subspaces characterized by
M S= ∑j j

z; we obtain the lowest energy denoted by E N M( , ) of the
Hamiltonian matrix in each subspace. We calculate all the values of
E N M( , ) available for the clusters up to N = 36 by the numerical
diagonalization. The diagonalization is carried out based on the
Lanczos algorithm and/or the Householder algorithm. Part of the
Lanczos diagonalizations were carried out using an MPI-parallelized
code which was originally developed in the study of Haldane gaps [39].
The usefulness of our program was confirmed in large-scale paralle-
lized calculations [21,31,40–42].

3. Field-derivative analysis

In order to investigate the low-lying spin excitation, we apply the
field-derivative analysis which was developed in our previous work
[28]. The argument of the analysis is briefly reviewed as follows: the
effect of the applied external magnetic field h is described by the
Zeeman energy term

∑h S= − .Z
j

j
z

(2)

The energy of  per site in the thermodynamic limit is defined as

E N M
N

m N( , ) ∼ ϵ( ) ( → ∞),
(3)

where m M SN= /( ) is the magnetization normalized by the saturated
magnetization SN . If we assume mϵ( ) is an analytic function of m, the
spin excitation energy would become

E N M E N M
S

m m
NS

( , + 1) − ( , ) ∼ 1 ϵ′( ) + 1
2

ϵ″( ) 1 + ⋯ .
⎛
⎝⎜

⎞
⎠⎟ (4)

Thus, this equation gives the quantity corresponding to the width of the
magnetization plateau at m as follows,

E N M E N M E N M E N M m
NS

( ( , + 1) − ( , )) − ( ( , ) − ( , − 1)) ∼ ϵ″( ) 1 .2

(5)

Minimizing the energy of the total Hamiltonian + Z  , the ground
state magnetization curve is derived by

h m S= ϵ′( )/ . (6)

The field derivative of the magnetization is defined as

χ dm
dh

S
m

≡ =
ϵ″( )

.
(7)

If we assume χ ≠ 0, namely mϵ″( ) is finite, the magnetization plateau at
m would vanish in the thermodynamic limit, because of (5). Thus a
necessary condition for the existence of a magnetization plateau at m is
χ = 0 in the thermodynamic limit. Now we apply this argument for the
spin gap. We should examine the case of h → 0 corresponding to m = 0.
In this case, the equation (5) can be rewritten as

NS
2Δ ∼ ϵ″(0) 1 ,N 2 (8)

where E N E NΔ = ( , 1) − ( , 0)N is the spin gap for an N-spin cluster.
Thus a necessary condition of the finite spin gap would be χ = 0 at
m = 0 in the thermodynamic limit.

In order to estimate χ at m = 0 from discrete data for finite-size
systems, it is the most simple way to use neighboring three data in the
form χ3 defined as

χ NS E N M E N M E N M= [−2 ( , ) + ( , + 1) + ( , − 1)].3
−1

(9)

Actually, Eq. (9) was used in our previous examination [28]. However,
a significant possibility cannot be denied that there remain deviations
from the ideal quantity owing to the discreteness. It is expected to

reduce the deviations if one uses neighboring five data instead of the
above three under the assumption that mϵ( ) is analytic. In the method
employing neighboring five data, we use χ5 defined as

χ NS E N M E N M E N M

E N M E N M

= − 5
2

( , ) + 4
3

( ( , + 1) + ( , − 1))

− 1
12

( ( , + 2) + ( , − 2)) .

5
−1 ⎡

⎣⎢
⎤
⎦⎥ (10)

In the thermodynamic limit, χ3 should agree with χ5. We show the
estimated χ3 and χ5 for the kagome- and triangular-lattice antiferro-
magnets in the following sections.

4. Kagome-lattice antiferromagnet

We investigate the field derivative of the magnetization χ for the
S = 1/2 kagome-lattice antiferromagnet.

Let us, first, show differences between χ3 obtained from Eq. (9) and
χ5 obtained from Eq. (10); results are depicted in Fig. 1. One can
confirm that the differences are small irrespective of the values of m.
The smallness is also observed irrespective of N. It is expected that we
can obtain better estimates of χ by the small deviations from χ3 to χ5.

Let us, next, focus our attention on the system-size dependence of
the field derivative of the magnetization at m = 0. We plot χ5 at m = 0
calculated by the form (10) as a function of N1/ for N = 36, 30, 24, 18,
and 12 in Fig. 2. Although the system-size dependence exhibits a slight

Fig. 1. Field-derivative of the magnetization as a function of m for N = 36 and 30 in the
kagome-lattice antiferromagnet. Circles and triangles denote results for N = 36 and 30,
respectively. Black open and red closed symbols represent results of χ3 obtained from Eq.

(9) and χ5 obtained from Eq. (10), respectively.

Fig. 2. The system-size dependence of the field derivative of the magnetization at m = 0
estimated by the form (10) in the case of the kagome-lattice antiferromagnet. Numerical
data are plotted as a function of N1/ for N = 36, 30, 24, 18, and 12.
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