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KEYWORDS Abstract Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier
Microbial electrolysis cell for vehicles. A cutting edge technology called a microbial electrolysis cell (MEC) can achieve sus-
(MEC); tainable and clean hydrogen production from a wide range of renewable biomass and wastewaters.
Reactor design; Enhancing the hydrogen production rate and lowering the energy input are the main challenges of
Hydrogen production rate MEC technology. MEC reactor design is one of the crucial factors which directly influence on
(HPR); hydrogen and current production rate in MECs. The rector design is also a key factor to up-
Membrane; scaling. Traditional MEC designs incorporated membranes, but it was recently shown that
Anode; membrane-free designs can lead to both high hydrogen recoveries and production rates. Since then
Cuthoge multiple studies have developed reactors that operate without membranes. This review provides a
brief overview of recent advances in research on scalable MEC reactor design and configurations.
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Nomenclature

MEC microbial electrolysis cell
HPR hydrogen production rate
GHG greenhouse gas

PEM proton exchange membrane
H' proton
AEM anion-exchange membranes

CMM charge-mosaic membranes
BEAMR  bio-electrochemically assisted microbial reactor
MFC microbial fuel cell

As specific surface area

NH; ammonia gas

CEM cation exchange membrane
COD chemical oxygen demand
BESs bioelectrochemical systems
SMP soluble microbial products

CE coulombic efficiency
CEA cloth electrode assembly
™ titanium wire

SS stainless steel

dWw domestic wastewater
GDE gas diffusion electrode
Yo hydrogen yield

DSSC dye-sensitized solar cell
MRECs microbial reverse-electrodialysis electrolysis cells

MDC microbial desalination cell
MEDC  microbial electrodialysis cell
MSC microbial saline-wastewater electrolysis cell

MEDCC microbial electrolysis desalination and chemical
production cell
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1. Introductions-microbial electrolysis cells (MECs)

In 2003, Nobel Laureate Dr. Richard Smalley stated that “‘en-
ergy is the single most critical challenge facing humanity” [1].
The world is facing an epic dilemma. The majority of energy
(>86%) is derived from fossil fuels (oil, coal, and natural
gas), which are non-sustainable resources that at some point
may be completely exhausted [2]. Furthermore, increasing con-
cerns over the impacts of these resources on global climate,

human health, and ecosystems around the world are prompt-
ing researchers to find renewable alternatives for meeting our
growing energy demand [3]. Hydrogen has tremendous poten-
tial as a fuel and energy source. Burning hydrogen does not
contribute to greenhouse gas (GHG) emissions, acid rain or
ozone depletion due to the fact that its oxidation product is
only H,O vapors [4-6]. Furthermore, hydrogen is highly effi-
cient: it has the highest energy content per unit weight among
the gaseous fuels, energy content 120 MJ/kg for H,, 44 MJ/kg
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