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A B S T R A C T

Recently solvers for the Anderson impurity model (AIM) working directly on the real-frequency axis have
gained much interest. A simple and yet frequently used impurity solver is exact diagonalization (ED), which is
based on a discretization of the AIM bath degrees of freedom. Usually, the bath parameters cannot be obtained
directly on the real-frequency axis, but have to be determined by a fit procedure on the Matsubara axis. In this
work we present an approach where the bath degrees of freedom are first discretized directly on the real-
frequency axis using a large number of bath sites (≈50). Then, the bath is optimized by unitary transformations
such that it separates into two parts that are weakly coupled. One part contains the impurity site and its
interacting Green's functions can be determined with ED. The other (larger) part is a non-interacting system
containing all the remaining bath sites. Finally, the Green's function of the full AIM is calculated via coupling
these two parts with cluster perturbation theory.

1. Introduction

The single-orbital Anderson impurity model (AIM) [1] can be
represented exactly by an interacting site coupled to a bath of infinitely
many non-interacting sites. In approaches based on exact diagonaliza-
tion (ED), the number of sites in the interacting system is restricted,
and thus the bath needs to be truncated [2–4]. This is a delicate step,
because no unique procedure exists. Different ways are used, e.g., fits
on the Matsubara axis or continuous fraction expansions [3,5,6].

Various methods improving on ED have been presented in recent
years, e.g., the variational exact diagonalization [7], the distributional
exact diagonalization [8] and methods based on a restriction of the
basis states [9–13]. Another way of going beyond ED is the use of
cluster perturbation theory (CPT) [14–16], i.e. the more advanced
variational cluster approximation (VCA) [17–19], as a solver for the
AIM [20,21].

From now on, we assume a single-orbital AIM coupled to a finite
but large bath of L − 1 non-interacting sites. The basic idea of using
CPT as an impurity solver is to separate the L-site AIM into a cluster of
size LC , which includes the impurity site and L − 1C bath sites, and a
non-interacting system consisting of the remaining bath sites. In
general, the non-interacting Green's function is specified by the
Hamiltonian H 0, that is a matrix in orbital space of size L L× . For
illustration purposes (see the sketch in Fig. 1), we denote the upper left
L L×C C block in H 0 as the interacting cluster, subsequently HC

0. The

remaining, lower L L L L( − ) × ( − )C C block describes the remainder of
the bath, subsequently HR

0. Additionally, there are two off-diagonal
blocks T connecting HC

0 and HR
0. The onsite Hubbard interaction

H Un n=U I I,↑ ,↓, where I labels the impurity site, is now added to the
cluster Hamiltonian, H H H= +C C U

0 . There are no interactions in the
bath degrees of freedom, hence HR

0 remains unchanged.
In CPT both Hamiltonians (HC and HR

0) are solved exactly for their
single-particle Green's functions G ω( )C and G ω( )R . To obtain G ω( )C we
use the Lanczos procedure at zero temperature [22,23]. Note that
G ω G ω( ) = ( )R R

0 , as the remainder of the bath is a non-interacting
system. Subsequently, the two systems are joined to yield the single-
particle Green's function of the full system G ω( ) via the CPT relation
[15]
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where V is a L L× coupling matrix consisting only of the T blocks. Eq.
(1) is exact in the case of a non-interacting system (U = 0). In the
interacting case, the CPT relation is no longer exact, but a result of
perturbation theory in V. CPT approximates the self-energy of the full
system by the self-energy of the interacting cluster.

In general, the non-interacting bath can always be transformed to a
tridiagonal representation via a Lanczos tridiagonalization, yielding a
chain representation of the AIM. This representation straight forwardly
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allows to define the separation of the interacting cluster and the
remainder of the bath. However, the situation is not so clear in other
representations. Consider for example the case of a star geometry,
where all bath sites couple directly to the impurity site. Incorporating
just a random set of these star sites into the interacting cluster will lead
to a poor discretization of the bath, and hence a poor self-energy.

Any unitary transformation on the non-interacting bath degrees of
freedom leaves the physics of the interacting AIM invariant. However,
such a transformation will influence the self-energy of the interacting
cluster significantly, since it changes the cluster Hamiltonian HC.
Additionally, such transformations will also alter the off-diagonal block
T, rendering the resulting perturbation in some cases larger than in
others. There exist an infinite number of representations which all
describe the non-interacting bath exactly and which are related via
unitary transformations. However, the CPT method itself suggests
which baths might be the best: Those which “minimize” the off-
diagonal perturbative elements in T. The key idea of this work is to
use unitary transformations to find those bath representations with
minimal couplings between the cluster and the remainder of the bath.

In the following, we outline a way to construct CPT-favorable bath
representations in Section 2, and present results for a L = 64 AIM with
a semi-circular particle-hole symmetric bath in Section 3.

2. Method

The general form of the non-interacting Hamiltonian for an L-site
AIM is

∑ ∑H c c t c c t c c= ϵ + ( + h. c.) +I I I
i

L

iI i I
i j

L

ij i j0
†

=1

−1
†

, =1

−1
†

(2)

where the impurity is denoted by the index I and the L − 1 bath sites by
i and j. We omit the spin indices. To obtain H0 for an L-site system one
can use a star representation, where each bath site couples only to the
impurity site. Then, the parameters of H0 can be determined by a
discretization of the non-interacting bath DOS into equally spaced
intervals. Each interval is represented by a delta peak, where the energy

positions of the delta peaks correspond to the on-site energies and the
hopping parameters are obtained from the spectral weights in the
intervals. Of course, the higher the number of bath sites the better the
result of this discretization.

Under a unitary transformation R, performed in the bath only, with
c R d= ∑i α iα α and c d R= ∑ *i α α αi

† † , where RR = 1 1† , the transformed
Hamiltonian reads

∑ ∑H c c h d c h d d′ = ϵ + ( + h. c.) + .I I I
α
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The parameters of the Hamiltonian transform like h R t= ∑ *αI i αi iI and
h R t R= ∑ *αβ i j αi ij jβ, . Such a transformation leaves the impurity state I and
consequently ϵI invariant.

We define an “energy” of a certain bath representation via the 2-
norm of the off-diagonal blocks T

∑E
N

T= 1 | | ,
T i j

ij
,

2

(4)

where the number of elements in T is N L L L= ·( − )T C C .
Transformations on the bath degrees of freedom included in the
interacting cluster do not influence the resulting self-energy. The same
is true for transformations performed only in the remainder of the
bath. This imposes a constraint on the energy E, namely, it has to be
invariant with respect to such transformations, which is indeed fulfilled
by the 2-norm.

The aim is now to find an optimal bath representation for CPT by
minimizing the energy E. Since the configuration space of Tij is high
dimensional, we use a Monte Carlo procedure. Initially, we perform
global updates in all dimensions with random rotation matrices to
obtain a randomized starting representation of H0. Then, we move
through the space of possible H0 by proposing random local updates R.
In general, any unitary update would be allowed, but here we restrict
ourselves to two-dimensional rotation matrices for the local updates
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R
ϕ ϕ

ϕ ϕ

=

1 0 … 0 0 … 0 … 0
0 1 … 0 0 … 0 … 0
… … … … … … … … 0
0 0 … cos( ) 0 … −sin( ) … 0
0 0 … 0 1 … 0 … 0
… … … … … … … … 0
0 0 … sin( ) 0 … cos( ) … 0
… … … … … … … … …
0 0 … 0 0 … 0 … 1

A local update matrix R i j ϕ( , , ) is drawn by choosing two random
integers i j L, ∈ [1, − 1] representing the plane of rotation and one
rotation angle ϕ π∈ [0, 2 [. A new representation with energy E′ is
accepted with probability p e= min(1, ′ )γ E E− ( − ) . We use simulated
annealing to obtain low-energy CPT bath representations by increasing
the parameter γ .

Although bath rotations leave the particle-hole symmetry invariant on
the L-site H0, they destroy it on the LC-site cluster. Therefore, as shown in
Fig. 1, we split the bath sites into an equal amount of positive (blue
elements) and negative energy (red elements) sites and one zero mode
(green 0). Updates are performed simultaneously on the positive and
negative modes which leaves the whole bath, the bath in the cluster as well
as the remaining bath particle-hole invariant. To avoid a Kramers-
degenerate ground state, clusters with an even number of sites LC are
chosen. This implies that one bath site (the zero mode) is exactly located at
zero energy. Zero mode updates cannot be achieved by two-dimensional
rotations without breaking the particle-hole symmetry of the cluster, but
would rather require special unitary transformations involving at least three
bath sites. For the proof of concept presented here, we refrain from
updating the zero mode, i.e. the green elements in Fig. 1 do not change.
Hence, the zero mode coupling is determined by the initial discretization of
the system. Although this restricts the space of trial bath representations,
we leave the zero mode updates for future works.

Fig. 1. Splitting of the Hamiltonian H 0 into an interacting cluster HC
0 of L = 6C sites, the

remaining reservoir HR
0 and the coupling of those two system T. In the specific example of

a particle-hole symmetric system the unitary updates are performed in the space of
negative energies (red) and equivalently in the space of positive energies (blue). No non-
zero matrix elements are generated in the white blocks by the two-dimensional rotation
matrices used in this work. The diagonal blocks from top to bottom represent: (1) the
impurity, (2) the zero mode inside the cluster, (3) two negative modes inside the cluster,
(4) two positive modes inside the cluster, (5) the remaining negative modes in the
reservoir and (6) the remaining positive modes in the reservoir.
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