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A B S T R A C T

Due to the capability of Eringen's nonlocal elasticity theory to capture the small length scale effect, it is widely
used to study the mechanical behaviors of nanostructures. Previous studies have indicated that in some cases, the
differential form of this theory cannot correctly predict the behavior of structure, and the integral form should be
employed to avoid obtaining inconsistent results. The present study deals with the bending analysis of nanoplates
resting on elastic foundation based on the integral formulation of Eringen's nonlocal theory. Since the formulation
is presented in a general form, arbitrary kernel functions can be used. The first order shear deformation plate
theory is considered to model the nanoplates, and the governing equations for both integral and differential forms
are presented. Finally, the finite element method is applied to solve the problem. Selected results are given to
investigate the effects of elastic foundation and to compare the predictions of integral nonlocal model with those
of its differential nonlocal and local counterparts. It is found that by the use of proposed integral formulation of
Eringen's nonlocal model, the paradox observed for the cantilever nanoplate is resolved.

1. Introduction

The nonlocal elasticity theory is extensively used to analyze the me-
chanical characteristics of nanostructures such as nanobeams, nanoplates
and nanotubes. The mechanical behavior of structures at nanoscale is
size-dependent [1], and the classical continuum mechanics cannot cap-
ture the size effects. Therefore, different modified continuum mechanics
theories are employed to investigate the structural characteristics of
structures at micro and nano scales [2–6]. Among the non-classical
continuum mechanics theories, the nonlocal elasticity theory firstly
proposed by Eringen [7] and Eringen and Edelen [8] has been employed
by many researchers to study the nanostructures. According to nonlocal
theory, the stress at the reference point is a function of strain field at all
points of the domain. For more information about the development of
nonlocal elasticity theory, one can refer to [9–13].

The first version of nonlocal model presented by Eringen [7] was in
the integral form and the nonlocal influences could be taken into account
using arbitrary kernel functions. Since managing of the associated
integro-partial differential equations was mathematically difficult, the
differential form of nonlocal elasticity theory was proposed [10] for a
specific kernel function (Green function of linear differential operator).
Due to its easier mathematical treatment in comparison to the integral

form, the differential form of nonlocal elasticity theory is widely
employed to study the mechanics of nanostructures. The work presented
by Peddieson et al. [14], which shows the application of differential
version of Eringen's nonlocal theory in nanotechnology, attracted a great
deal of attention among the scholars to employed this model in their
studies on the nanobeams [15–21], nanoplates [22–33], nanotubes
[34–43] and nanocones [44–46]. For instance, Demir and Civalek [20]
presented the vibration analysis of embedded nanobeams based on a new
nonlocal finite element formulation using the Hermitian cubic shape
functions. The new analytical approach according to Hamiltonian-based
model and the nonlocal theory was reported by Rong et al. [31] for free
and forced vibration and buckling of nanoplates. Also, Arani and Jalaei
[33] studied the influences of longitudinal magnetic field on the dynamic
response of viscoelastic graphene sheet based on the nonlocal model and
sinusoidal shear deformation theory. In addition, comprehensive review
study on the application of the nonlocal elasticity models in modeling of
the carbon nanotubes and graphenes are presented in Ref. [47].

However, in some cases it was seen that the differential form of
Eringen's nonlocal theory presents the paradoxical results. For instance, it
was reported that on the basis of the differential nonlocal model, as the
nonlocal parameter increase, the cantilever nanobeams under the
distributed loading conditions show the stiffening effect [48].
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Accordingly, various studies have been performed to solve Eringen's in-
tegral nonlocal model or propose a modified nonlocal models in order to
resolve the reported paradoxes. Employing an integral-based Eringen's
nonlocal model for the cantilever nanobeam under point load, leads to
the response identical to the classical cantilever beammodel without any
small scale effect. To overcome this paradox, a gradient elastic model and
an integral nonlocal elastic model were presented by Challamel and
Wang [49] based on combining the local and the nonlocal curvatures in
the constitutive elastic relation. Furthermore, Challamel et al. [50]
indicated that considering nonself-adjointness of Eringen's differential
model leads to stiffening effect on the vibration analysis of the
clamped-free beams with the increase of small length scale coefficient.
Moreover, an anlytical approach was rcently presented by Fern�an-
dez-S�aez et al. [51] to solve the integral form of Eringen's nonlocal
elasticity theory for the bending of Euler-Bernoulli nanobeams. The re-
sults revealed that with integral formulation, the paradox that appears
when solving the cantilever beam with the differential form of the
Eringen model is solved. Employing the finite element method, Tuna and
Kirca [52] studied the bending, free vibration and buckling of nanobeams
based on the integral form of Eringen's nolocal theory along with
Euler-Bernoulli beam model.

In the present paper, the bending of embedded nanoplates subjected
to static uniform loading is investigated within the framework of Erin-
gen's integral nonlocal model. The Winkler- and Pasternak-type elastic
foundations are taken into account. On the basis of the first order shear
deformation plate theory, the governing equations for both integral and
differential forms are derived. The finite element method is also used to
solve the problem and to study the bending behavior of embedded
nanoplates under various boundary conditions. Comparison studies are
also conducted between the results of integral form of Eringen's nonlocal
theory and those of nonlocal differential and local models.

2. Integral model of nonlocal elasticity

2.1. Derivation of formulation

According to Eringen's nonlocal elasticity theory, the general form of
constitutive equations of plates are given as follows [7].

tijðx; zÞ ¼ λδijεkkðx; zÞ þ 2μεijðx; zÞ ¼ Cijklεklðx; zÞ (1)

σijðx; zÞ ¼ ∫
A
kðjx� xj; κÞ tijðx; zÞ dAðxÞ (2)

where atij and σij are the components of local and nonlocal stress tensors
respectively, εij is the strain tensor component, Cijkl is fourth order elas-
ticity tensor and δij stands for Kronecker delta. In addition, x ¼ ðx; yÞ is all
points on domain, x ¼ ðx; yÞ denotes reference point, k presents the
kernel function, κ ¼ e0a is length parameter and jx� xj shows the
neighborhood distance.

Considering above, the elastic strain energy of nanoplate and its
variation can be presented as

Πs ¼ 1
2
∫
z
∫
A
σijðx; zÞεijðx; zÞ dAðxÞdz

¼ 1
2
∫
z
∫
A
ð∫ Akðjx� xj; κÞ tijðx; zÞ dAðxÞÞεijðx; zÞ dAðxÞdz (3)

δΠs ¼ ∫
z
∫
A
σijðx; zÞδεijðx; zÞ dAðxÞdz

¼ ∫
z
∫
A
ð∫ Akðjx� xj; κÞ tijðx; zÞ dAðxÞÞδεijðx; zÞ dAðxÞdz (4)

Considering the first order shear deformation theory, the displace-
ment field of plate is introduced as

u1ðx; y; z; tÞ ¼ uðx; y; tÞ þ zψðx; y; tÞ; u2ðx; y; z; tÞ
¼ vðx; y; tÞ þ zϕðx; y; tÞ; u3ðx; y; z; tÞ ¼ wðx; y; tÞ (5)

which can be rewritten as follows

u¼pðzÞq; uðx;zÞ¼ ½u1 u2 u3 �T

pðzÞ¼

2641 0 0 z 0

0 1 0 0 z

0 0 1 0 0

375; q¼ ½uðx; tÞ vðx; tÞ wðx; tÞ ψðx; tÞ ϕðx; tÞ �T (6)

The constitutive relation presented in Eq. (2) can be given in matrix-
vector form as

σðx; zÞ ¼ ∫ Akðjx� xj; κÞCεðx; zÞ dAðxÞ (7)

in which

σðx; zÞ ¼

266664
σxxðx; zÞ
σyyðx; zÞ
σxyðx; zÞ
σyzðx; zÞ
σxzðx; zÞ

377775;C ¼

266664
λþ 2μ λ 0 0 0

λþ 2μ 0 0 0
μ 0 0

ksμ 0
sym: ksμ

377775; εðx; zÞ

¼

266664
εxxðx; zÞ
εyyðx; zÞ
2εxyðx; zÞ
2εyzðx; zÞ
2εxzðx; zÞ

377775 (8)

where σ, ε and C are the stress vector, strain vector and material stiffness
matrix, respectively.

According to the displacement field, the strain-displacement re-
lationships is presented as

εxxðx; zÞ ¼ ∂u
∂x þ z

∂ψ
∂x ; εyyðx; zÞ ¼

∂v
∂yþ z

∂ϕ
∂y ;

2εxyðx; zÞ ¼ ∂u
∂x þ

∂v
∂yþ z

�
∂ψ
∂x þ ∂ϕ

∂y

�
;

2εyzðx; zÞ ¼
�
∂w
∂y þ ϕ

�
; 2εxzðx; zÞ ¼

�
∂w
∂x þ ψ

� (9)

Subsequently, the strain vector is presented as

εðx; zÞ ¼ PðzÞEq (10)

in which

PðzÞ ¼

266664
1 0 0 z 0 0 0 0
0 1 0 0 z 0 0 0
0 0 1 0 0 z 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

377775 (11)

E ¼

266666666664

∂x 0 0 0 0
0 ∂y 0 0 0
∂y ∂x 0 0 0
0 0 0 ∂x 0
0 0 0 0 ∂y
0 0 0 ∂y ∂x
0 0 ∂y 0 1
0 0 ∂x 1 0

377777777775
; ∂x ¼ ∂

∂x and ∂y ¼ ∂
∂y ; (12)

Now, Eqs. (3) and (4) can be represented as

Πs ¼ 1
2
∫
z
∫
A
εTðx; zÞσðx; zÞ dAðxÞdz (13)

δΠs ¼ ∫
z
∫
A
δεTðx; zÞσðx; zÞ dAðxÞdz (14)
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