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A B S T R A C T

In the present study Klein tunneling in a single-layer gapped graphene was investigated by transfer matrix
method under normal magnetic field for one and two magnetic barriers. Calculations show that electron trans-
mission through a magnetic barrier is deflected to positive angles and reduces as the magnitude of magnetic
field and especially the energy gap increases. This reduction is even more significant in larger fields so that after
reaching a specific value of energy gap, an effective confinement for fermions and suppression of Klein tunneling
is reached particularly in normal incidence and the conductance becomes zero. Unlike one barrier, the process of
tunneling through two magnetic barriers induces symmetric transmission probability versus the incident angle;
even, for lower energy gaps, electron transmission probability increases which in turn reduces total conductance
via proper changes in the value of the magnetic field and energy gap. In general, it is concluded that confining
electrons in asymmetric transmission through one barrier is conducted better than two barriers.

1. Introduction

Graphene is a single layer of carbon atoms in a honeycomb lat-
tice the unique electronic properties and applications in electronic
devices of which has drawn much attention in recent years. The sim-
plest approximation to express physical properties of charge carriers
in graphene is the single particle model in a Tight binding approxima-
tion in which displacement dynamics of lattice atoms are neglected.
This simple approximation describes many of the observed features of
graphene, at least, qualitatively [1]. Considering the fact that Dirac
fermions in graphene could tunnel through electrostatic barrier, one
major goals is to control electron behavior using electric fields in
graphene [2,3]. Experimental studies have shown that fermions of
graphene could traverse long distance in micrometer scale without
dispersion [4]. Therefore, confining Dirac fermions in the well and
the electrostatic potential barriers created by electric fields is usu-
ally not done properly. One solution for this problem is using mag-
netic barriers instead of electronic potential barriers working based on
wave vector filter [5]. Due to confining properties of magnetic field,
various magnetic configurations and magnetic graphene superlattice
have been studied regarding the control of charge carriers in graphene
[6–10]. Based on some of these studies, applying strain in graphene,
in low energy values, by means of pseudo vector potentials, can lead
to pseudo magnetic fields so that a modest strain with triangular sym-
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metry can create a nearly uniform magnetic field surpassing tens of
Tesla which entails quantization of Landau levels [11–13]. When the
magnetic field is reduced to less than critical field values, the Lan-
dau levels undergo a collapse transition and the classical behavior of
Lorentz Force appears [14,15]. Notwithstanding the remarkable prop-
erties of graphene, the loss of band gap in it impedes its applicabil-
ity in electronic devices based on graphene. There are various meth-
ods to create band gap in graphene one of which is forming graphene
into ribbons [16–18]. It has been shown that the gap values increase
by decreasing the nanoribbon width [19,20]. There are several other
methods such as interaction of suitable elements and adsorption which
can be used to create band gap in graphene [21–25]. Recently, it
has been experimentally established that an adjustable and measur-
able gap can be created by using a monolayer graphene grown on
SiC (0001) substrate by doping low-energy (5ev) Li+ ions in which
the amount of gap depends on doze of Li+ ions [26]. Also, with Na
adsorption onto bare and Ir cluster superlattice-precovered epitaxial
graphene on Ir(111), a large gap adjustable up to 740 (mev) can be
created [27].

Considering the fact that the effect of gap opening and its varia-
tion in graphene conductance with magnetic potential barrier has not
been investigated yet, we were encouraged and inspired to investi-
gate the effect of energy gap on the electron transmission probabil-
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ity and conductance in one and two magnetic barriers of single layer
graphene.

The paper includes the following sections: Section two discusses
electron tunneling through one and two magnetic barriers by transfer
matrix method. The focus in section three is on total conductance and
the angular dependence of transmission under a magnetic field effect.
Section four represents a summary of the findings.

2. Model and method

In this section electron tunneling through a magnetic barrier is stud-
ied. The potential vector and the magnetic field for a magnetic potential
barrier in the Landau gauge is as follows [10]:

Bz(x) = BlB[𝛿(x + d) − 𝛿(x − d)]̂z, (1)

Ay(x) = BlBΘ(d2 − x2)ŷ. (2)

where Θ(x) is the Heaviside step function and Ay(x) is the mag-

netic vector potential. The lB =
√

ℏ

eB is the typical magnetic length
and D = 2d in which, D is the width of the barrier. We consider a
graphene with a gap opening due to the sublattice symmetry breaking,
in the presence of perpendicular magnetic field, Bz(x), in such a sys-
tem, the 2D massive Dirac fermions at low energy is described by the
Hamiltonian

H = vF 𝜎.
(

P + e
c

A(x)
)

+ Δ 𝜎z, (3)

where P is the momentum operator, Δ is the energy gap and vF is the
Fermi velocity. Then the equation HΨ(x, y) = EΨ(x, y) admits solu-
tions

Ψ(x, y) =

(
𝜓1(x, y)

𝜓2(x, y)

)
, (4)

with 𝜓1(x, y) and 𝜓2(x, y) obeying the coupled equations,

vF(𝜋x ± i𝜋y)𝜓2,1 = (E ± Δ)𝜓1,2, (5)

In this equation, 𝜋 = P + e
c A. Considering ℏvF

lB
as the unit of energy,

𝛿 = ΔlB
ℏvF

, 𝜀 = ElB
ℏvF

and x = x
lB

are the units of length and Ψ(x, y) =

𝜙(x)eikyy in the Landau gauge, thus the following equation is obtained:

−i
[
𝜕

𝜕x
± (kylB − 𝛼)

]
𝜙2,1(x)e

ikyy = (𝜀 ± 𝛿)𝜙1,2(x)e
ikyy , (6)

where Ay(x) = BlBΘ(d2 − x2)ŷ = BlB𝛼 and

𝛼 =

{
𝛼 = 1 |x| < d
𝛼 = 0 |x| > d.

(7)

Separating these coupled equations, the following equation is pro-
duced:[
−𝜕2

x + (kylB − 𝛼)2
]
𝜙1,2 = (𝜀2 − 𝛿2)𝜙1,2. (8)

In the range −d < x < d electrons experience a barrier of height
[ky + sgn(e)∕lB]2. The following are the wave functions in each region:

𝜙1 =

⎧⎪⎨⎪⎩
𝜌1eikxx + r𝜌1e−ikxx ∶ x < −d
a𝜌2eiqxx + b𝜌2e−iqxx ∶ |x| < d
t𝜌1eikxx ∶ x > d,

(9)

𝜙2 =

⎧⎪⎨⎪⎩
s𝜂1[e(ikxx+𝜑) − re−(ikxx+𝜑)] ∶ x < −d
s′𝜂2[a ei(qxx+𝜃) − b e−i(qxx+𝜃)] ∶ |x| < d
t𝜂1ei(kxx+𝜑) ∶ x > d.

(10)

s and s′ are both +1. Solving the equation gives the eigenvalue of
the dispersion relation as follows: E = ±

√
ℏ2𝜈2

f k2
f + Δ2, with energy gap

Δ. We also have:

𝜌1 = cos 𝛼k
2
, 𝜂1 = sin𝛼k

2
𝜌2 = sin𝛼k

′

2
, 𝜂2 = cos 𝛼k

′

2
, Si = sgn(E − V(x)),

k =
√

k2
x + k2

y , k′ =

√
q2

x +
(

ky −
1
lB

)2
, tan𝛼k = ℏ𝜈f

(k2
x + k2

y )
1∕2

Δ
,

tan𝛼′k = ℏ𝜈f

[
q2

x +
(

ky − 1∕lB
2
)]1∕2

Δ
, q2

x +
(

ky −
1
lB

)2
= E2 − Δ2

ℏ2V2
f
, (11)

kx = kf cos 𝜑, ky = kf sin 𝜑. (12)

where 𝜑 is the incident angle and 𝜃 are refractive angles in barrier zone.
In this study, the focus will be on Dirac point K. By applying wave
functions continuity in boundaries, coefficients r, a, b and t are calcu-
lated. The transmission probability is calculated by T = tt* assuming
of 𝛼 = D kx and 𝛽 = D qx for one barrier using the following equation:

T = cos2𝜃 cos2𝜑

cos2𝜃 cos2𝜑 cos2D qx + sin2Dqx(sin 𝜑 sin 𝜃 + C
2B )

, (13)

Where B = 𝜌1 𝜌2 𝜂1 𝜂2,C = (𝜂1 𝜌2)2 + (𝜌1 𝜂2)2 and:

C
2B

= 1
2

{
tan 𝛼k

2
tan 𝛼

′
k

2
+ co tan 𝛼k

2
co tan 𝛼

′
k

2

}
, (14)

Conservation of energy in two regions gives the following equation:

sin |𝜃| = sin |𝜙| − sgn(𝜙) 1
kFlB

. (15)

Subsequently, this ends in asymmetric transmission through one and
symmetric transmission through two oppositely oriented barriers. The
wave functions for two magnetic barriers are as follows:

𝜙1 =

⎧⎪⎪⎨⎪⎪⎩

𝜌1eikxx + r𝜌1e−ikxx ∶ x < −d
a𝜌2eiq1xx + b𝜌2e−iq1xx ∶ x ∈

[
−d, 0

]
c𝜌2eiq2xx + d𝜌2e−iq2xx ∶ x ∈

[
0, d

]
t𝜌1eikxx ∶ x > d,

(16)

𝜙2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

s𝜂1

[
e(ikxx+𝜑) − re−(ikxx+𝜑)

]
∶ x < −d

s′𝜂2

[
a ei(q1xx+𝜃1) − b e−i(q1xx+𝜃1)

]
∶ x ∈

[
−d, 0

]
s′𝜂2

[
c ei(q2xx+𝜃2) − d e−i

(
q2x x+𝜃2

)]
∶ x ∈

[
0, d

]
s𝜂1tei(kxx+𝜑) ∶ x > d.

(17)

where 𝜑 is the incident angle and 𝜃1, 𝜃2 are refractive angles in envi-
ronments 1 and 2 respectively. The transmission coefficient T for two
barriers is calculated by applying boundary conditions. In a particu-
lar case and for the normal incident, transmission coefficient T for two
barriers is calculated through:

T(𝜑 = 0) = 64(𝜌1𝜂1𝜌2𝜂2)
A2 cos2(2qxD) + P + Q + Z

, (18)

In this equation: A = 6(𝜌1𝜂1𝜌2𝜂2)2 + (𝜂1𝜌2)4 + (𝜌1𝜂2)4,B = 2
(𝜌1𝜂1𝜌2𝜂2)2 − (𝜂1𝜌2)4 − (𝜌1𝜂2)4,C = 𝜌1𝜂

3
1𝜌

3
2𝜂2 + 𝜌3

1𝜂1𝜌2𝜂
3
2 , P = 16 C2sin2

(2qxD) + 8BC sin(2kxl) × sin(2qxD)[cos(2qxD)−1],Q = B2[1+2 cos(2kxL)
(cos(2qxD) − 1) + 1 − cos(2qxD)]2, Z = 2AB cos(2qxD) [1 + (cos(2qxD) −
1) cos(2kxL)].

In above equations, L is the width of the well and D is the width of
the barrier. Studies on magnetic barriers have revealed an asymmetric
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